HMS

Mihyun Kang

Mihyun Kang

Born in Jeju, South Korea • Studied Mathematics Education at Jeju National University in Jeju, South Korea • PhD in Mathematics from Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, South Korea  • Lives in Graz, Austria • Full Professor at Graz University of Technology (TU Graz)

In a way, becoming a Professor of Mathematics was probably always on the cards for me. Even as a child, the only subject I remember enjoying at school was mathematics and so pursuing higher education in this field felt natural.

I had both my parents’ support and encouragement to pursue this path in life. My father, a professor himself, gave me an early insight into the profession and all it entails. What I saw was mostly positive and so it was maybe no big surprise that I ended up in academia as well.

After finishing my PhD in 2001, I made my way to Berlin, Germany, to become a Postdoc at Humboldt University. Almost everything there – maths, academic culture, language, people’s attitude, as well as everyday life outside the university – was new and sometimes challenging to me, but I loved it. In this new world I could be what I was, without feeling the need to try to overly adjust myself to the standards and expectations of society.

I spent ten years in Germany, managing to progress from a postdoc to Heisenberg Fellow and then to Acting Professor at the University of Munich. I also used this time to learn the German language, which I now speak fluently. But I must say it took quite a few years to be able to teach in German, because the language of maths research is English and I taught only small Master’s courses, also in English.

Only later, when I started to teach Bachelor’s courses in German for engineering students and took part in academic administration as a Senate member of TU Graz, did I become more confident in using German in teaching and daily discussions.

I believe my approach of bridging multiple fields has contributed greatly to my career success, as it allows me to be more inventive and recognise patterns among seemingly different objects and mathematical behaviours that can only be discovered by thinking in an interdisciplinary manner.

For the past 13 years I have been a full professor at TU Graz in Austria, where I lead the Combinatorics Group. In my work, I draw inspiration from many neighbouring disciplines. My main research is centered around the phase transition phenomenon, partly because it appears in many different disciplines, including combinatorics, discrete probability, computer science, statistical physics, and network sciences. In fact, this phenomenon is almost everywhere including daily life, e.g., the change from ice to water and then to gas. 

I believe my approach of bridging multiple fields has contributed greatly to my career success, as it allows me to be more inventive and recognise patterns among seemingly different objects and mathematical behaviours that can only be discovered by thinking in an interdisciplinary manner.

Doing research in mathematics involves a lot of collaboration with mathematicians from all over the world. I greatly enjoy discussions with mathematicians from different mathematical and cultural backgrounds.

Although mathematics may appear too abstract and detached from real life to most people, everybody has been exposed to hot topics such as digital security or artificial intelligence, which, in fact, rely heavily on progress in mathematics.

In addition to being part of this international network, my participation in the SFB (Research Network) “Discrete random structures: enumeration and scaling limits” – supported by a science and research funding organization in Austria – gives me a rewarding opportunity to forge closer collaborations with mathematicians coming from top universities in Austria. This research network brings together researchers from the fields of combinatorics and probability and even touches on areas such as quantum physics.

Although mathematics may appear too abstract and detached from real life to most people, everybody has been exposed to hot topics such as digital security or artificial intelligence, which, in fact, rely heavily on progress in mathematics. I therefore strongly believe that maths is invaluable to our society and a field worth pursuing a career in.

Date published: Sep 03, 2025

Image credit: TU Graz

Posted by HMS in Stories
Laura Lewis

Laura Lewis

Born in China • Studied mathematics and computer science at California Institute of Technology (Caltech) in USA • Master’s in mathematics from University of Cambridge in UK • Lives in USA • Quantum information student, pursuing PhD at the University of California, Berkeley

Throughout my educational journey meandering through pure math, theoretical computer science, physics, and ultimately arriving in quantum information, I’ve seen that all these fields have deep foundations in mathematics, regardless of their outward label.

Early in life, I was drawn to math for its concreteness. To add two numbers together, there was a fixed set of rules, in contrast to other subjects we learn in elementary school, e.g., spelling which (especially in English) has many arbitrary rules and exceptions.

I was lucky to have a previous college math professor as my high school math teacher. He taught advanced math courses not typically covered in the high school curriculum, e.g., real and complex analysis.

With this initial interest, my experiences during high school solidified it and greatly influenced my academic path. I was lucky to have a previous college math professor as my high school math teacher. He taught advanced math courses not typically covered in the high school curriculum, e.g., real and complex analysis. With this, I was able to get a head start on math and got a glimpse of how it is explored in higher education: less through calculations and numbers, but with proofs.

Another pivotal experience was when I attended a program at the Massachusetts Institute of Technology (MIT) during the summer of my junior year in high school. There, I was challenged with advanced courses and projects but, perhaps most importantly, it was where I was first exposed to quantum mechanics. It immediately fascinated me due to its mystery, where even the first axioms are still debated. This is especially in contrast to other high school physics subjects, e.g., kinematics and electromagnetism, which are taught as having already been solved. This first experience with quantum mechanics planted a seed which would grow in college.

I double majored in pure mathematics and computer science, and as a part of the freshman seminars, one professor mentioned the intersection of these fields with quantum physics: quantum computing. I was fascinated.

When I started my undergraduate degree at the California Institute of Technology (Caltech), I kept in mind my previous exposure to quantum physics and kept my eyes peeled for any interesting opportunities. I double majored in pure mathematics and computer science, and as a part of the freshman seminars, one professor mentioned the intersection of these fields with quantum physics: quantum computing. I was fascinated. This subject would allow me to explore my interdisciplinary interests in math, physics, and computer science, and I thought it was a great fit. That summer, I reached out to the professor and started a project with him on how to efficiently check the correctness of a powerful quantum computation using only your laptop. With this experience, I saw how important a strong mathematical foundation is for this type of research, which focuses on rigorously proving the security of such verification protocols.

It was also at this point in my education where I started to notice the gender imbalance in math and quantum science, where I was the only female pure math major in my year in undergrad. This was not at all specific to Caltech but representative of the field as a whole.

During my undergrad, I also worked on designing machine learning algorithms to predict  ground states. A ground state is the lowest energy state of a system, where one can think of a ball lying at the bottom of a bowl. A good understanding of ground states can provide us with insights into different properties of quantum systems, so this is an important problem in quantum physics. In this project, I was able to leverage my mathematical background in analysis to provide rigorous theoretical proofs on the performance of my algorithms. It was fascinating to see how math could help pave the way for novel scientific exploration in important physics problems. I received the Barry M. Goldwater Scholarship for my research (awarded to undergraduates in the USA for outstanding research), which increased my confidence to pursue the subject further.

It was also at this point in my education where I started to notice the gender imbalance in math and quantum science, where I was the only female pure math major in my year in undergrad. This was not at all specific to Caltech but representative of the field as a whole. I hope that by continuing to pursue a research career, I can inspire other young women to follow their passions and dive into mathematics with confidence.

After college, I pursued two master’s degrees in the UK through a Marshall Scholarship (awarded to recent college graduates from the USA to perform two years of graduate study in the UK). The first was at Cambridge in mathematics, a course which is well-known for offering an extensive array of advanced math classes. The second is a research degree at the University of Edinburgh in computer science, where I am free to explore a research topic of choice. These past two years have allowed me to hone my research interests and learn new mathematical tools to attain these goals. Soon I will start my Ph.D. at University of California, Berkeley, focusing on quantum information, and I’m excited to see where my pursuit of mathematics leads me next in advancing our scientific understanding of the universe.

Published on May 21, 2025.

Photo credit: Daniel Chen

Posted by HMS in Stories
JoAnne Growney

JoAnne Growney

Born in rural Pennsylvania in 1940 • Studied PhD in Mathematics at University of Oklahoma, United States • Lives in United States • Occupation Taught mathematics at Bloomsburg (PA) University (now part of Commonwealth University); now retired

Before I was a math girl, I was a farm girl – the oldest of three children growing up on a farm in Pennsylvania —  the one who went to the barn with her father while her mother took care of the little ones.

Math (often numbers and counting) was an inconspicuous but central part of farming – counting eggs as I collected them from beneath the hens, counting the sheep as they came into shelter at night to make sure that none had drifted away.  Geometric quantities also were important – the volumes of harvested grains and fruit, the distances between parallel rows of corn, the gallons of milk expected from our Guernsey cow which I milked morning and evening.

My teacher, a graduate of an elite college and unashamed of her math ability, was an energetic and supportive example of “girls can do math.”

Perhaps my farm experience helped me to be good at math – and that skill seemed fine in elementary school years but as my classmates and I moved through high school my female math ability seemed to make people turn away from me.  In my senior year, I was one of only three girls in my math classes.  BUT that year I also had an inspiring experience.  My teacher, a graduate of an elite college and unashamed of her math ability, was an energetic and supportive example of “girls can do math.”

Receipt of a scholarship from Westminster College in New Wilmington, Pennsylvania, enabled me to go away from home to continue my education.  (To my dismay, at Westminster I had several “only girl in the class” experiences.)  I started out as a chemistry major but, during my sophomore year. I learned that my “science scholarship” could be used toward a math major and then (preferring math to chemistry) I switched, combining studies of math with secondary education. AND I took creative writing courses and had work published in the campus literary journal. In those days (early 1960’s), many jobs were not available to women – but teaching was.

Graduation from Westminster led to marriage, to secondary school teaching in the Philadelphia area, to evening graduate classes at Temple University – from which I obtained an MA in Mathematics.  My husband (Wallace/Wally) – who had studied physics and math and a bit of computer science – took a job at Susquehanna University in Selinsgrove, PA.  I did some part-time teaching at Susquehanna and at nearby Bucknell – but soon we moved to Norman, Oklahoma where Wally would pursue a doctorate so that he could qualify for tenure at Susquehanna. While we were in Oklahoma, with lots of time on my hands, I was able to attain a teaching assistantship and continue my studies also. 

One of the requirements for mathematics professors at Bloomsburg University was to teach “general education” courses for non-majors and this experience led me to write and publish a textbook entitled Mathematics in Daily Life – a book containing material that engaged students in mathematical reasoning related to counting, voting, travel, decision-making, and other frequent concerns. 

Graduate school brought complications to our marriage. In our earlier studies, I had gotten better grades but we credited it to his sports and fraternity activities – AND, I studied more carefully. But at The University of Oklahoma, it became evident that I was the better student and, eventually, that caused stress for both of us. I became his helper. We studied together. During our work on dissertations, I became pregnant. When our doctoral studies were completed, we returned to Pennsylvania, bringing with us a baby daughter.  I secured a tenure-track position at nearby Bloomsburg State College (now part of Commonwealth University).  AND I was able to keep my on-campus schedule to three days per week and to find excellent child care; our care-giver, Erma, was loving and dependable. Our family grew with another childbirth and two adoptions.

Keeping busy helped our marriage survive but over time we began to recognize that things weren’t working and weren’t repairable. This eventually led to divorce and to me and the kids moving to the town of Bloomsburg (and to me avoiding the 30-mile commute).  My time in Bloomsburg involved congenial colleagues, a great neighborhood – a safe place for my children even if I was not with them and walk-to schools.  When my children grew up – and left home for college and marriage and  . . . I found time to revive my childhood interest (begun as a child reading Robert Louis Stevenson’s A Child’s Garden of Verses) to poetry.

One of my favorite poems celebrates the mathematician, Amalie Emmy Noether;  it’s title is “My Dance is Mathematics”

One of the requirements for mathematics professors at Bloomsburg University was to teach “general education” courses for non-majors and this experience led me to write and publish a textbook entitled Mathematics in Daily Life – a book containing material that engaged students in mathematical reasoning related to counting, voting, travel, decision-making, and other frequent concerns.  Work on this project and — even more so — my interest in poetry drew me into connections with other colleagues (in English and Philosophy and . . . and I gradually began to participate in poetry events and publication in addition to my math-related activities.

Writing poetry was an activity that I much enjoyed – and many of my poems incorporate mathematical ideas.  One of my favorite poems celebrates the mathematician, Amalie Emmy Noether;  it’s title is “My Dance is Mathematics” and it is available online at this link:   https://joannegrowney.com/ChapbookMyDance.html ;  here is its opening stanza:

They called you der Noether, as if mathematics

was only for men.  In 1964, nearly thirty years

past your death, at last I saw you in a spotlight,

in a World’s Fair mural, “Men of Modern Mathematics.”

Once my kids were grown – and using some funds inherited from a great aunt – I began to engage in travel-related math-and-poetry activities.  Via “Teachers for Tomorrow” – a non-profit organized by one of my high school friends – I spent part of several summers teaching (math and poetry and English conversation) – in India and in Romania. 

A few years into retirement, I moved south to the Washington, DC area where three of my four children were living with their young families.  And I am still here!

More can be learned about me at my website: https://joannegrowney.com. In 2010 I began to write a blog entitled “Intersections – Poetry with Mathematics” (found at   https://poetrywithmathematics.blogspot.com/) – and, with more than 1600 posts so far, my blogging continues.  My own thought processes seem to follow the rule that “everything connects” – and this article shares some related ideas:  https://joannegrowney.com/Everything-Connects–JMA-Growney-26June2020.pdf

THANK YOU for reading!  I hope you also enjoy math and poetry and their connections!

Image credit: Diann Growney Harrity

Posted by HMS in Stories
Catherine Micek

Catherine Micek

Born in United States • Studied PhD in Mathematics at University of Minnesota in Minneapolis, United States • Lives in United States • Occupation Data Scientist

Galileo Galilei said “Mathematics is the language with which God has written the universe.” I chose to have a career in mathematics because I wanted to be a “translator” for the language of mathematics. 

The first time I realized that I might enjoy teaching math was when I was in sixth grade.  I was writing up a solution to a pre-algebra problem for a school newspaper article, and I discovered that I loved breaking the problem down into smaller steps that could each be carefully explained. Communicating a logical and precise solution was beautiful to me.

When I went to college, choosing a major was tough because I was curious about many subjects. What drew me towards math during my freshman year was the idea of becoming a college math professor. A career as a math professor would allow me to combine the challenge of solving math problems as well as communicating the results.  Furthermore, the fact that mathematics could be applied to a variety of fields appealed to my widespread curiosity. During college, I studied applications of math to some familiar and loved subjects (such as music) as well as some new and interesting ones (such as computer science). I majored in math and minored in physics and computer science with the goal of pursuing a Ph.D. in applied mathematics upon graduation.

Graduate school was very different from my undergraduate studies. The coursework was more demanding, so I had to improve my study habits, and research required that I develop an entirely new set of skills. The nature of research was very different from the syllabus structure of problem sets and exams in a course. Since my goal was to solve a problem no one had ever solved before, it required a creative and flexible approach, one that emphasized the exploration, experimentation, and steady refinement of ideas.  But perhaps the most important lesson I learned was that there is no single “correct” way to be a mathematician. I saw that fellow students succeeded by developing a process of learning and research that worked for their unique set of talents and interests. I, too, had to develop such a process, even though it was an arduous and intimidating journey, fraught with a lot of trial and error. Ultimately, though, the effort was worth it because it built my self-confidence.

Since my goal was to solve a problem no one had ever solved before, it required a creative and flexible approach, one that emphasized the exploration, experimentation, and steady refinement of ideas.  But perhaps the most important lesson I learned was that there is no single “correct” way to be a mathematician.

At the end of graduate school, I had an unforeseen change of plans. My goal had always been to get a tenure-track job (which is the career track to a permanent academic position in America) at a local school. However, since no local positions were open the year I was graduating, I had to consider the trade-offs between my geographic location and the type of job I wanted. If I didn’t relocate, I would have to broaden my job search to include non-academic jobs (which I didn’t know much about) and temporary academic jobs (which had more uncertainty). It was scary to consider changing my long-held career plans, but I had an established support system of family and friends locally who were an important part of my life. After extensive deliberation, I accepted a two-year faculty position at a local school and began investigating non-academic career paths.  

Luckily for me, jobs in data science were starting to surge around the time I started looking at industrial jobs. Companies were looking to hire employees who understood complex statistical and machine learning algorithms and could write computer code.  Data science was a great fit for my interests and skills – I had a lot of programming experience and was willing to learn whatever additional mathematics I needed for a job – so I began looking for jobs where I could use and further develop my technical skills.  

My first industry job was building statistical models for pricing policies at an insurance company, and from there I segued into data scientist and software developer roles. Although the domains are different and the mathematical techniques I use vary, my jobs generally have consisted of formulating the mathematical problem, writing the code to train the model and implementing the solution, and explaining the results to business stakeholders. I’ve worked as a data scientist at several companies on problems with diverse applications: energy, finance, supply chain, manufacturing, and media.   Although the details of my professional life are different than if I was a math professor – the work is interdisciplinary and team-oriented – I still get to be a “translator” of mathematics. 

Even though my career path has gone differently than I originally planned, I am happy with the unexpected directions it has taken me. Keep in mind that the best career path is not about what the majority is doing or what others advise that you “should” do: it is the path you create for yourself.

Published on March 12, 2025.

Photo credit: Catherine Micek

Posted by HMS in Stories