Stories

Sherli Koshy-Chenthittayil (she/her)

Sherli Koshy-Chenthittayil (she/her)

Born in Abu Dhabi, United Arab Emirates • Birth Year 1983Studied Mathematics at Mahatma Gandhi University in IndiaHighest degree PhD in Mathematics from Clemson University, USALives in Nevada, USAOccupation Data Analyst

I am an applied mathematician and educator with interests in mathematical biology and STEM education. I am also invested in increasing diversity in STEM, particularly, with respect to students with disabilities. As a third culture Malayalee Indian who was born and raised in the Middle East and moved to the States for my PhD, I have had the best of three worlds – India, the Middle East, and the States. In addition to my love for all things related to math, I love books (all kinds), movies, Shahrukh Khan (Hindi actor), K-dramas, and BTS (K-pop group).  My mathematics journey started in school, where I fell in love with the logic and grace of the subject. My other passion was teaching the subject I loved most. It came as no surprise to everyone who knew me that I would pursue a mathematics teaching career.

I moved to India for my bachelor’s degree in mathematics, a master’s degree in mathematics, and even a bachelor’s degree in mathematics education. The theme is clear: I love mathematics. During my degrees, the beauty of proofs, and the varied applications of math spoke to me. I then started my own tutoring center in India and as a tutor in both higher education and K-12, I designed group projects as well as mathematics trivia games to increase inquiry and class participation.

Dealing with accessibility and gender representation in my math classes turned me into an advocate for women and people with disabilities in the STEM fields.

I was born with limb-girdle muscular dystrophy and transitioned to a wheelchair in 2011. I then decided to move to the States for my PhD in applied mathematics. Dealing with accessibility and gender representation in my math classes turned me into an advocate for women and people with disabilities in the STEM fields. Working with like-minded colleagues has helped me realize the power of math in fighting social issues and in self-advocacy.

Leadership positions helped me navigate academia with confidence.

My journey after my PhD took me to Connecticut where I was a postdoctoral scholar. I used mathematical models to investigate biology and education related questions. I also was the President of the postdoctoral council. Leadership positions helped me navigate academia with confidence. Further nuances of the world of math were revealed to me during my postdoctoral tenure. I realized how mathematical models could be developed with constant input from my wet-lab colleagues.

I am looking forward to the discoveries of the versatility of mathematics.

I currently work as a Data Analyst with the Office of Institutional Effectiveness, Touro University Nevada. My job responsibilities include advising faculty, student and affiliate investigators on research design and analytical approaches to optimize research study quality and providing descriptive and inferential data analysis for a diversity of biomedical, institutional, and educational projects. I am looking forward to the discoveries of the versatility of mathematics.

Posted by HMS in Stories
Nicola Richmond

Nicola Richmond

Born in UK • Studied Mathematics and Computer Science in Edinburgh, UK • Highest Degree PhD in Algebra and Algebraic Geometry • Lives in London, UK • Occupation VP of AI

As a child, I enjoyed solving logic puzzles and spent a lot of time teaching myself BASIC on a Commodore VIC-20 that my dad had given to my brother for Christmas – my brother wasn’t remotely interested in the computer – I was obsessed by it!

My love for the problem-solving aspects of mathematics was solidified at school. I was lucky to have amazing mathematics teachers who made my learning journey both interesting and enriching. After regularly getting decent marks in school tests, I realised that I also had an aptitude for the subject and specialised early on by taking double mathematics A’ Levels.

(…) The inherent precision and rigour in mathematics helps keep my wandering mind constrained!

I went on to study mathematics as an undergraduate at Edinburgh. While there, I gravitated to pure mathematics – I love the logical nature of abstract mathematics and how concepts and rules can be linked together to develop new ideas and prove theorems – the inherent precision and rigour in mathematics helps keep my wandering mind constrained! I intended to pursue an academic career in mathematics, but with permanent academic positions in short supply, I settled on IT as a sensible Plan B and stayed on at Edinburgh to take an MSc in computer science. After that, I headed to Leeds to study for a PhD in representation theory of finite-dimensional algebras; and this was the end of my pure mathematics adventure – a career involving computing beckoned!

Looking back, there were several junctions along the road where I could have taken a different direction. The first was leaving my IT consultancy role to join Unilever on a two year contract. This introduced me to the world of chemoinformatics which I could link to mathematics by considering molecules as graphs of atoms connected by bonds. When my contract at Unilever came to an end, and with no sign of the recruitment freeze lifting, I decided to go to Sheffield as a post-doctoral researcher to work on developing a (commercialised) approach to facilitate computer-aided drug design.

Just over a decade was in the computational chemistry department, developing methods to find small molecules with medicinal properties.

Following the post-doc, I spent 18 years at GSK. Just over a decade was in the computational chemistry department, developing methods to find small molecules with medicinal properties. I then made an internal move to focus on bringing novel data analytics methods into GSK. This GSK chapter exposed me initially to the world of deep learning and its application to computer vision, and then later to new drug modalities, like antibodies, when I was responsible for a portfolio of digital, data and analytics projects.

The final four-year leg of my GSK journey I spent in the newly-formed AI/ML organisation. There, I learned the virtues of good engineering best practice and agile development, which was excellent preparation for my current role as VP of AI at BenevolentAI. I was also put in charge of building and leading the GSK.ai Fellowship Programme, which ignited a passion for developing, mentoring and nurturing junior staff members.

While I no longer have the opportunity to indulge in pure mathematics, mathematics is omnipresent in what I do.

Now at BenevolentAI, I focus on the company AI strategy and our centre of functional excellence in AI. While I no longer have the opportunity to indulge in pure mathematics, mathematics is omnipresent in what I do. I spend a lot of time reading the AI literature, which really combines probability theory, statistics, linear algebra, calculus and optimisation, and thinking about how we can leverage AI to accelerate drug discovery.

Young students often struggle to visualise how the study of mathematics may translate into practice. Many believe they’ll end up being a banker, an accountant or a mathematics teacher (which are of course worthwhile professions). I never really planned my career-journey, I did what felt right at the time, and I would never have imagined that I’d end up using my skill-set to find life-changing medicines for patients. So here’s my advice: we’re living in challenging economic times, so be flexible and responsive – seek out and embrace new opportunities that play to your strengths; and most importantly, follow your passion for mathematics – it can take you anywhere!

Posted by HMS in Stories
Juliet Nakakawa Nsumba

Juliet Nakakawa Nsumba

Born in Kayunga district, Uganda • Birth year 1986 • Studied Mathematics and Physics (B.Sc. with Education) at Makerere University in Kampala, Uganda • Highest Degree Ph.D. in Mathematics • Lives in Kampala, Uganda • Occupation Lecturer at Makerere University

Currently, I am a lecturer in the Department of Mathematics at Makerere University in Kampala, Uganda. It is so exciting that today I consider myself one of Uganda’s most successful women in mathematics. At my primary level, I used to struggle with mathematics but was always intrigued by the challenges it would cause me to think about. I finished my primary level with mathematics as my worst subject. My secondary education was a turnaround. I would struggle with math until one time we had a change of teacher and he gave the first test. I got a 20%, and in the second test a 40% and after that my performance drastically improved and my passion for the subject grew so that it became my best subject. My math teacher encouraged me a lot. I had to redefine my friends to have those with similar interests. I would discuss this with my peers irrespective of gender. The reading of mathematics became easier.

Regarding the negative image that mathematics was for men: I guess I refused to believe that. I saw it as a challenge that had to be solved.

After my O’ level, resources were scarce in that my parents couldn’t afford my education at the kind of schools with equipped laboratories to enable me to continue pursuing my math/science career. But they were so determined to see me excel. My mom would always encourage me not to lose hope. At that time, I belonged to a supported program of Compassion International. That is where my help came from at the moment. God used Compassion to fully provide my sponsorship throughout A’ level. Of my A ‘level subjects, mathematics still seemed easy and would still be my best. Of course, I had support from my teachers who always encouraged me. Regarding the negative image that mathematics was for men: I guess I refused to believe that. I saw it as a challenge that had to be solved. I spent most of my time with the boys. Thank God they were quite helpful. When they noted I wasn’t going away, they knew we had to work together. When I completed my Uganda advanced certificate, I was given a Bachelor of Science degree with education (mathematics, physics). To be honest, I had never dreamt of being a teacher. I wanted to do Telcom engineering. My grades couldn’t push me there. Today I am grateful that my passion and desire for mathematics never came to an end. I decided to do my best to get good grades during my Bachelor’s degree. This opened more doors for me.

(…) I decided on mathematical epidemiology. I have seen so much of its application with endemic diseases and the consistent outbreaks of new viral diseases, especially in my country.

Later I joined the African Institute for Mathematical Sciences, which provided a platform for me to see how I could use mathematics. I have always loved the application of mathematics. It is not surprising that when I decided to choose the direction for my career, I decided on mathematical epidemiology. I have seen so much of its application with endemic diseases and the consistent outbreaks of new viral diseases, especially in my country. After my Ph.D. which I completed in my home country, I felt equipped to be part of the solution to our health sector. Yes, I am still growing in my career and every day I notice my effort in changing the lives of my people and Africa as a whole.

The limited resources never stopped me from pursuing my dream – instead, I would utilize whatever opportunity I could get to excel.

Being a mathematician has changed my status; by this, I cannot consider myself poor or financially disadvantaged, I have gained respect even among my peers just because I chose mathematics up to the highest academic qualification. As a mentor on several forums, I have got a number of young people who look up to me as their role model, something I lacked as I pursued the mathematics journey. I have inspired many to pursue the subject and STEM fields. I am an advocate for girls in STEM, and sharing my story with those young people struggling and almost giving up on mathematics is my passion. Once in a while, I do outreach programmes where I get to visit schools so that I can encourage young people that they can achieve much more as others before them have achieved. The mathematics journey is always interesting, but only those who choose not to give up can succeed. The limited resources never stopped me from pursuing my dream – instead, I would utilize whatever opportunity I could get to excel. The change of attitude and not dwelling on negativity from those around me enabled me to excel.

Posted by HMS in Stories
Sophie Huiberts

Sophie Huiberts

Born in The Netherlands • Studied Mathematics at the University of Utrecht • Highest Degree PhD in Mathematics • Lives in the USA • Occupation Postdoctoral Researcher

I definitely did not always want to be a mathematician when I was young. I had a great mathematics teacher in high school, who was very enthusiastic about it. Still, I thought that mathematics was a bit boring, as it did not touch upon any of the subjects that interested me as a teenager. However, I did like programming at that time, which I did as a hobby. At some point I found out that the algorithms I programmed also had inventors. For me, that was a real revelation, and being an ‘inventor of algorithms’ seemed like the best job in the world to me! These people were described as mathematicians and computer scientists, so this made it easy for me to choose my majors at university after high school: mathematics and computer science as a double bachelor program in Utrecht.

At some point I found out that the algorithms I programmed also had inventors. For me, that was a real revelation, and being an ‘inventor of algorithms’ seemed like the best job in the world to me!

In my master program I already chose for mathematics over computer science. I found the theoretical aspects of algorithms more interesting than implementing them in practice, on which the computer science degree put a heavy focus. I really liked my master graduation project, so when my thesis supervisor posted a vacancy for his first PhD student, I applied for this position, and that is how I got into research professionally.

These types of algorithms solve optimization problems that can for example create train schedules, allocate personnel to different tasks or design large sports competitions.

Funnily enough, my research now is still about algorithms, so that interest stuck with me. I now focus on a very particular type of algorithms: the ones used in linear programming and integer linear programming. These types of algorithms solve optimization problems that can for example create train schedules, allocate personnel to different tasks or design large sports competitions. In theory, these algorithms can take a very long time to run. Nevertheless, in practice these algorithms are extremely fast. I  investigate how this difference between theory and practice arises, and try to come up with theoretical models that better explain why these algorithms work so well in practice.

I am most proud of my recently published results on the so-called `diameter of random polytopes’. This was an open problem in my area for quite some time, and I solved it as part of a research team. But I am most proud of the fact that this was the first project where I was really in the lead as a scientist. During the beginning of your PhD, you usually rely on your supervisor for guidance, and they often give you problems to work on, broken up into manageable chunks. This was the first time that I really took the lead in a project, and I ended up being the one to give specific tasks to my coauthors to complete. This experience gave me a lot of confidence and made me certain that I would like to remain in academia.

Most postdocs I knew were often stressed by their uncertain and temporary positions. This was not something I wanted for myself.

Even after this positive experience, I was a bit doubtful about the postdoc phase. Most postdocs I knew were often stressed by their uncertain and temporary positions. This was not something I wanted for myself. I therefore decided to only apply to two positions that seemed great to me. If they both would not work out, I would leave academia. One of the positions was here as a Simons fellow at the University of Columbia. Someone I knew asked if they could nominate me for it, and of course I said yes. In the end, I even got offered both positions I applied for, so that made me more certain that I am welcome in the research environment. As a fellow, I have a three year position with a grant and not many obligations. This makes the postdoc experience much more pleasant.

To me, the best part about being a researcher in mathematics is the fact that I am sometimes the first person who finds the solution to a particular problem, the first person ever to know a particular fact. This is a very special experience, and I can be happy about it for weeks. I also really like the fact that I can sit in my office, and just think about a problem for a while without time pressure.

Posted by HMS in Stories
Qiaoqiao Ding

Qiaoqiao Ding

Born in Linyi, China • Birth year 1989 • Studied Applied Mathematics at Shanghai Jiao Tong University in Shanghai, China • Highest Degree Doctor in Mathematics • Lives in Shanghai, China • Occupation Assistant Research Scientist

When I was a teenager, I didn’t know what maths studies would be like. But I always took every maths lesson seriously and finished all the maths homework quickly and correctly, which gave me a sense of achievement and satisfaction among peers. I was able to find regular patterns in numbers or common features, which I found very exciting. I was not a very confident girl, but maths gave me strength.

Therefore, I decided to study maths at the University. However, I did not feel like the smartest student and university mathematics was very different from high school. I felt a bit frustrated and didn’t know how to reduce or eliminate the gap. In the second year of university, computational mathematics appeared in my life, which can be regarded as the combination of maths and computer science. Using computer science to solve mathematical problems and translating computer programs into mathematics language are two main aspects. I was attracted by the variety of applications and began to pay more attention to this field in the following semesters. From my Master’s to my doctoral research, my major was always applied mathematics. I did not only choose it because of my interests but also due to the possibility to get into contact with different subjects. Even though I saw more and more women devote themselves to computer science and mathematics, I was still hesitant. Would I do as well as men, as I needed to spend more time with my family? Could I be successful in this field? Could I find my favorite job? I did my best to find the answers to these questions.

If I can solve a problem with mathematics and present the result with a computational method, I will feel very happy.

I encountered many difficulties during my PhD. My advisor is also a woman and she gave me a lot of good advice. She had published many excellent works in optimization and medical imaging and supported my own research immensely. After finishing my PhD, I applied for an academic job in Singapore and worked there for three years. During that time, my husband was working in the US. We had to conquer the difficulty of time and distance. In my opinion, family is a very important part of one’s whole life. Every researcher needs to balance work and life, especially women. In China, women play a more important role in the relationship between husband and wife, the education of children and the connection with friends and relatives. Two years ago, my husband decided to return to China and he found a position in Shanghai. Finding a job in the same city is a big problem for me. I received a lot of help and advice from my collaborators and friends.

Now, maths has become a part of my life. Everyday, I try to solve some problems using mathematics tools and try to deduce some theorem or lemma to interpret the methodology. If I can solve a problem with mathematics and present the result with a computational method, I will feel very happy. My husband works as an assistant professor of mathematics in a university and we can discuss many interesting topics together. I think I can say that maths is my job and my life.

If anyone meets any predicament, I would strongly recommend to struggle. Try it and you will find it worth it.

At this stage of my life, I know what I want, i.e., working on applied mathematics and realizing my ideas. In China, as a woman, I never felt deprived or discriminated against for working in the field of maths or programming at the university. In fact, the contrary is the case and most people I encounter admire that I work in maths and computer science. A common perception in Chinese society is that maths is the most difficult subject and only the smartest people work on the research of it. In China, in order to encourage woman mathematicians to work in academia, many policies about gender quota have been made. In many job applications, women will be preferred over a man applicant if they have the same research abilities.

I am satisfied about the path I took, and very happy I had the courage to choose maths. I used to be afraid that I would not do well. But I know I can do my best, even if I am not the best researcher. Many of the maths students I met went through the same process and most of them did not give up. I think that most of the students that choose maths will persevere in difficult situations. If anyone meets any predicament, I would strongly recommend to struggle. Try it and you will find it worth it.

Posted by HMS in Stories
Lakshmi Chandrasekaran

Lakshmi Chandrasekaran

Born in India • Studied Applied Mathematics at New Jersey Institute of Technology in New Jersey, USA • Highest Degree PhD in Applied Mathematics • Lives in Chicago, USA • Occupation Science communicator and Digital marketer

Growing up in India in the 90s and early 2000s, becoming a software engineer was a rage! The country’s obsession with software engineering was second only to a lucrative career in medicine. Although I went through a similar grind and familial expectations, by the time I finished high school, my mind was fraught with a constant debate between pursuing the software engineering versus physical sciences route such as math or physics – two of my favorite subjects in school. However, not being proficient at writing software codes it was easy to narrow down my choice. Experiencing calculus, vectors and 3D geometry in high school had piqued my interest enough to pursue my Bachelor’s in pure mathematics.

While my passion and curiosity for math never waned all through college, I started to wonder about the practical applicability of math in daily life. To this end, I started researching for universities with an applied mathematics graduate program. My foray into research started as a PhD student at New Jersey Institute of Technology (NJIT) where scientists applied math models to explore diverse phenomena ranging from detecting underwater submarines to the complex workings of the human body. These studies exposed me to the repertoire of math and also led me to think why I was oblivious to it until then. Perhaps it was the lack of communication, which stifled a wider appreciation.

I learnt how to translate, synthesize and communicate complex math equations in a manner that the biologists could easily relate to.

After completing my PhD, I did a couple of postdoctoral fellowships, during which I had frequent interactions with our biologist collaborators. I learnt how to translate, synthesize and communicate complex math equations in a manner that the biologists could easily relate to. In a way, I felt this was my first taste of “science communication” that left me wanting for more; since it bothered me persistently that I was still communicating science among scientists. 

At this juncture, I got an opportunity to freelance as a science writer for an online English language newspaper based in Germany – ‘The Munich Eye, (TME). I took this up as a challenge to disseminate science to a wider audience. A few years into this experience made me realize that I was happier communicating science than doing the science myself. I decided to switch gears and pursue a career in science communication. To shore up my science communication skill sets, I pursued a Master’s degree in science journalism at Northwestern University. I have never looked back since then and consider it to be one of my best career decisions.

Something that I encountered quite frequently as a science communicator was that scientists often struggled (or perhaps were reluctant) to be good marketers of their own work.

As a science writer, I freelanced for several popular science online and print outlets, communicating in lay a wide gamut of technical topics from climate change to science policy. I found that my technical expertise and research experience always came in handy when sifting through scientific work and translating them into easy-to-digest summaries. Until recently, I worked at a non-profit organization, communicating dementia science to a diverse set of stakeholders including the general public and donors. 

Something that I encountered quite frequently as a science communicator was that scientists often struggled (or perhaps were reluctant) to be good marketers of their own work. Understandably, part of this fear stems from the philosophy of not wanting to brag about one’s own research findings. However, I found this to be an interesting challenge – how do you then make an obscure field such as STEM also appealing to a lay audience? To this end, I recently completed an online certificate course in digital marketing from Northwestern Kellogg School of Management. I now look forward to applying my digital marketing and communications skill sets to promoting better awareness of science and enhancing public engagement between researchers and the general public.

Although you may think as a PhD you are solely trained to specialize in a niche area, doctoral training provides several useful skill sets (…).

Does all of this mean my PhD degree is not being put to any use? Absolutely not! Although you may think as a PhD you are solely trained to specialize in a niche area, doctoral training provides several useful skill sets such as writing, researching, mentoring, managing projects etc. coupled with professional life hacks such as resilience and tenacity, among others. I find myself regularly applying these handy skill sets in any work setting. I believe my academic background has better prepared me to have a fulfilling career in science communication and marketing in several indirect ways, for which I am forever grateful.

Posted by HMS in Stories
Bernadette Spieler

Bernadette Spieler

Born in Deutschlandsberg, Austria • Birth year 1988 • Studied Information Management and eHealth at Graz University of Applied Science in Graz, Austria • Highest Degree PhD in Engineering Sciences from Graz University of Technology in Graz, Austria • Lives in Zurich, Switzerland • Occupation Professor in Computing Skills in Education, Zurich University of Teacher Education, Switzerland

Since February 2021, I have been at the Zurich University of Teacher Education (PHZH, Switzerland) as a professor for “Computing Skills in Education”. This professorship is located at two centres: the Centre for “Media Education and Informatics” and the Centre for “Education and Digital Transformation.” Previously, I was the Head of the Department of Informatics Didactics and a visiting professor (W2) at the Institute for Mathematics and Applied Informatics at the University of Hildesheim (Germany). I received my PhD in 2018 from the Institute of Software Technology at Graz University of Technology (TU Graz, Austria). At TU Graz, I worked first as a project assistant in the H2020 project “No One Left Behind“, and later as a postdoctoral researcher. I completed my dissertation on the topic “Development and Evaluation of Concepts and Tools to Reinforce Gender Equality by Engaging Female Teenagers in Coding”. For my thesis, I focused on the conception of a framework for a more gender equal classroom setting for inclusive computer science activities. This so-called “Playing, Engagement, Creativity, Creating” (PECC) framework suggests inclusive activities during different stages, considers the gender dimension in different intrinsic and extrinsic motivators, and shows how all students can benefit equally from them. It puts an emphasis on how to foster intrinsic motivators like pupils’ sense of belonging to computing fields, to generate interest for this area, to improve pupils’ self-efficiency towards computing, and finally, to bring fun elements to the classroom. Second, I developed different apps to engage girls in game design, e.g., “Luna&Cat” and Embroidery Designer.

(…) The focus in education is changing; it is less about imparting knowledge and more about enabling competence acquisition that is independent, reflective, and cooperative.

With its multitude of facets, computer science (CS) offers many exciting topics for children and young people. Girls in particular often do not have the opportunity to take an interest in such topics, or are quickly depreciated as a target group. For future generations, it is crucial not merely to use these technologies, but to understand and apply them. At the same time, the focus in education is changing; it is less about imparting knowledge and more about enabling competence acquisition that is independent, reflective, and cooperative. Education in a culture of digitality ensures the participation of all learners with their different prerequisites and equal opportunities. This requires the promotion of digital competences in a level-appropriate delivery (from school to teacher education to vocational training).

At the PHZH, I have the opportunity to reach teachers as multipliers in training and education. Various concepts such as game design, Maker-Education, or playful CS with quizzes and analogue activities enhance both inspiration and motivation. Furthermore, it is essential to dispel misconceptions that computer science is “not creative” or “too difficult”. Playing and creating games on smartphones are both popular activities for the new generation of digital natives, and therefore are a perfect match for the development of creativity, problem solving, logical thinking, system design, and collaboration skills. Particularly in my current project “Making at School“, we show exciting possibilities for interdisciplinary project work in various Maker activities. Making as a method for free experimentation, exploration, or (digital) tinkering enables new learning formats for education. Thus, Making facilitates open learning spaces with problem-solving tasks, interdisciplinary connections, and transversal competencies. For instance, technical understanding, creativity, craft skills, or concepts of sustainability and entrepreneurship are promoted.

In order to significantly influence future developments in CS didactics, I am involved in various expert groups. For example, as a product owner in the Catrobat Association, I am responsible for the development of apps to support children and young people in learning programming, as a member of the Swiss steering committee of the Informatics Beaver team, we create informatics riddles for the annual Bebras competition, as a member of the steering committee of digital switzerland (education and skilled workforce), we support the next generation of STEM students, and finally, I am a member of the working group for the curriculum development for informatics at the high school/secondary level.

The number of women in [computer science] is still very low, but there are promising ways to encourage and support more women to be deeply interested in [computer science] (…).

In my research, I address the aforementioned issues of equal opportunities in education, and highlight the importance of CS didactics within the context of education. Thereby my aim in this is to ensure greater diversity in technology. In my research, it is particularly important to empirically verify a positive effect on pupils. The extracurricular level should not be underestimated either. Since I have been offering courses specifically for girls in game design and programming for years, it was always a great wish to establish our own programming club in Zurich. With the help of the Manava-Foundation, we were able to realise our idea in March 2022 and proceeded to found the CoetryLab. From Summer 2022, we offer informatics and media courses for children and young people aged 10-20. This is intended to effectively support children in these subjects precisely where their needs are greatest.

By researching new concepts and standards in the field of gender-sensitive CS education and training, I hope to seek out and implement improvements in CS curricula, different CS-topics and to support girls and female adolescents in particular to gain CS skills. The number of women in CS is still very low, but there are promising ways to encourage and support more women to be deeply interested in CS and I am confident that gender-conscious pedagogy, especially in areas of CS education, is particularly useful and necessary!

Posted by HMS in Stories
Amanda Minter

Amanda Minter

Born in UK • Studied Mathematics at Lancaster University in Lancaster, UK • Highest Degree PhD in Infectious Disease Modelling • Lives in UK • Occupation Director of Equations of Disease C.I.C.

Growing up, universities were always a bit of a mystery to me, my parents didn’t go to university. But I was encouraged by my parents and schoolteachers that going to university would be the path for me. I thought that going to university and studying would help me change the world for the better. I enjoyed maths from a young age, it was a subject which came naturally to me. I found the lessons easy, but then at university, studying maths, I struggled.

Whether it was the format of lectures or the more abstract topics, the subject I loved didn’t come naturally anymore. I worried that I had reached my limit in my understanding of mathematics. After a few disappointing grades, I knew something would have to change if I was going to get a good degree. I had to do something different – I had to learn differently. 

I knew with enough time I could figure out most things – or know when it was taking me too long and I should ask for help!

I wasn’t used to having to put effort into learning maths, but now I would attend classes, then practice, read several books, find examples online, until I understood the concept. In those years at university, I learnt how to learn. And it paid off, not just at university, but further down the line as well.

I stayed at my university to do an MSc in Statistics. Although I loved group theory, I wanted to work on something more applied.  Following my MSc, I started a PhD in infectious disease modelling. Studying for a PhD was all about learning new things, and now I had learned how to learn. I knew with enough time I could figure out most things – or know when it was taking me too long and I should ask for help!

In universities I had been aware of being a first-generation university goer and of not having been to private school, and also of being White.

After my PhD, I stayed at university to do research applying mathematics to the problems of global health, but I found myself becoming disillusioned with academia. As a postdoctoral researcher I worked on some amazing mathematical problems and with some great scientists modelling infectious diseases. But I found myself reflecting on my place in global health research. In universities I had been aware of being a first-generation university goer and of not having been to private school, and also of being White. But I never really thought about what it meant to be White, British, and working in global health. 

My definition of success has changed a lot from starting at university and wanting to change the world with maths.

I was motivated to work in infectious disease modelling to use maths for good, but in my role as a postdoctoral researcher I felt I was not helping to support the decolonisation of global health. I decided to leave academia to set up the social enterprise I run now. I aim to create accessible training opportunities for learners in the Global South.

My definition of success has changed a lot from starting at university and wanting to change the world with maths. And to the aspiring mathematicians, the struggling ‘not a mathematicians’: know that the path to success is not linear, or even constant, but something which keeps changing the more you learn.

Posted by HMS in Stories
Nancy Reid

Nancy Reid

Born in Niagara Falls, Canada • Birth year 1952 Studied Statistics at the University of Waterloo in Waterloo, Canada • Highest Degree PhD in Statistics • Lives in Toronto, Canada • Occupation Professor, Department of Statistical Sciences, University of Toronto

As a professor my days are busy with teaching, research, and committee meetings. I enjoy all three, but my research time is special, as that’s when I get to do whatever interests me the most at the time, and there is always more to discover. Currently I’m working on some mathematical problems related to the theory of inference, and a colleague and I have been working with some astronomers to help analyse their data.

The research environment at Stanford was so exciting that I became completely hooked, and have made my entire career in academia.

I majored in mathematics as an undergraduate, but my plan was to specialize in computer science, as that was rumoured to be “the future” (in 1970). I did some programming, and realized I had no talent for that at all, but I really enjoyed the statistics courses. That was my first glimpse of using mathematical and statistical ideas for advances in science, medicine, health, social science, you name it!, and I found that fascinating. I was quite unsure about graduate work, so I went to the University of British Columbia for an MSc degree, and then I thought I would look for a ‘real job’. But that degree required a research thesis, and I got hooked on research. I had great advisors at UBC who steered me to Stanford for graduate work. Without their encouragement I’m sure I would not have had the courage to consider this. The research environment at Stanford was so exciting that I became completely hooked, and have made my entire career in academia.

So even if I was the only woman on seven hiring committees in a row, when I went to an international conference, or a small workshop,  I would go to women’s talks, introduce myself to women in groups, and seek out “my people”.

At many times in my career, I was often the only woman in the room and it was sometimes lonely. I got used to it, because there didn’t seem to be many options, but it’s not as nice as having more women in the room. Something that helped me was to make sure to seek out women when I had opportunities, for example at conferences. So even if I was the only woman on seven hiring committees in a row, when I went to an international conference, or a small workshop,  I would go to women’s talks, introduce myself to women in groups, and seek out “my people”. I made some great friends along the way. As I got older, and felt the situation was changing only very slowly, I became more outspoken about the lack of diversity.

The biggest shock to the system though was having children. I was already full professor and relatively old when my first (of two) daughters was born, and even with great support from my partner, and a well-established career, it was a challenge.

I was very fortunate to have very helpful mentors at every stage in my career, for which I am still grateful. I’ve tried to “pay it forward” by being encouraging to students and young faculty. While I never felt actively discriminated against at all, I did notice at some point fairly far along in my career that men were actually listening to me in meetings, and I was so surprised that I deduced this was rarely the case when I was younger. The biggest shock to the system though was having children. I was already full professor and relatively old when my first (of two) daughters was born, and even with great support from my partner, and a well-established career, it was a challenge. When younger colleagues starting families ask me for advice, I always say “Accept as much help as you are offered, and buy as much help as you can afford”.

Posted by HMS in Stories
Pêdra Andrade

Pêdra Andrade

Born in Pedrinhas – Sergipe, Brazil • Birth year 1989 Studied BSc in Mathematics at the Federal University of Sergipe (UFS) in Aracaju, Brazil • Highest Degree PhD in Mathematics at Pontifical Catholic of Rio de Janeiro (PUC-Rio) • Lives in Lisbon, Portugal • Occupation Postdoctoral researcher at IST – University of Lisbon

I decided I wanted to be a math teacher when I was eleven years old. It’s funny to remember that at such a young age, I already knew what I wanted to do with my life. I always had one of my biggest inspirations at home, my mom was a high school teacher and she loves math. I also enjoyed studying math and its accuracy always enchanted me.

Another of my goals was to study math at the Federal University of Sergipe (UFS), the only public university in Sergipe. This was one of the first challenges that I had on this journey. I studied hard to get into university. Fortunately, I got into UFS.

At the beginning of College, everything was amazing, I was living the dream. Even though I had many difficulties with the adaptation process to the university, the new city, and also living far from home, I had the courage and perseverance to tackle each of them. I believe that dealing with our inner selves is one of the biggest challenges we face when studying mathematics. Staying motivated and confident is hard work. This field of science is very beautiful but at the same time very difficult. During this time, I had the pleasure to interact with great professors who inspired me to continue studying mathematics. I’ve always been delighted by the mathematical concepts and the arguments that we use to produce the  beautiful math demonstrations.

Staying motivated and confident is hard work. This field of science is very beautiful but at the same time very difficult.

At this point, I decided to get my Master’s degree in mathematics. At that time, I had no idea what being a researcher was like. Different from my Bachelor’s, I was the only woman in the class. I started to feel like I didn’t belong in that space. I no longer felt comfortable talking and exchanging ideas with my colleagues; it was impossible not to compare myself with the others and I tried to fit in.

Even though I had many difficulties, I got  my Master’s degree. I survived and thanks to my desire to never give up I started my Ph.D. in math at PUC – Rio. As I studied commutative algebra during my Master’s degree, my first thought was to continue studying this subject, but there was no specialist Professor at the time at PUC – Rio. Looking back, I think this was a good thing, as it opened up so many possibilities. Trying to find myself I attended a seminar that focused on partial differential equations (PDEs) with algebra ingredients. I always had this enchantment in studying subjects at the intersection of many fields. I was very glad to see these connections as an example of the magnitude of the study of PDEs and their applications.

Trying to find myself I attended a seminar that focused on partial differential equations (PDEs) with algebra ingredients. I always had this enchantment in studying subjects at the intersection of many fields.

During my doctorate I had the opportunity to attend many scientific events including gender initiatives, give presentations, and I also had the opportunity to study at the University of Central Florida as a Visiting Fellow. After completing my Ph.D., I visited the Centro de Investigación en Matemáticas (CIMAT) in Mexico and held a postdoctoral position at São Paulo University, São Carlos in Brazil. These experiences contributed significantly to my research career, because I learned so much mathematics, but also I got some independence and learned a little bit about how a researcher’s career works. I am extremely grateful for the many special people who supported me throughout this journey.

It is worth mentioning that one of the biggest difficulties I deal with during my journey is the feeling that I have to be strong all the time. I’m not supposed to make mistakes and I do have to know the answers to every question. Nevertheless, the challenges inspire me and arise my curiosity. This is the feeling that moves me to overcome the difficulties that appear to me as a mathematician, such as learning new PDE methods or gender issues. For me, the scientific and human exchange is one of the greatest gifts the profession has given me. 

My research area concerns the study of regularity theory, the existence and the uniqueness of the solutions to elliptic and parabolic equations. Currently, I am a postdoctoral researcher at Instituto Superior Técnico (IST) – University of Lisbon and I am very excited to write this new chapter of my career as a woman in science.

Posted by HMS in Stories
Maurine Atieno Songa

Maurine Atieno Songa

Born in Kenya • Birth year 1986 Studied Mathematics at the University of Nairobi • Highest Degree MSc in Applied Mathematics from the University of Kwazulu-Natal • Lives in Durban, South Africa • Occupation PhD student at the University of Kwazulu-Natal and Assistant Lecturer, Kisii University, Kenya (on study leave)

I am currently pursuing a PhD degree in mathematics at the University of Kwazulu-Natal. My research uses the language of category theory, which is the study of objects and relationships between them, to unpack and understand real-life phenomena. The areas for its application are vast and include engineering, computer science, neuroscience, systems theory, and general relativity. This journey has indeed been a dream come true. I have loved mathematics since grade five, when I surprisingly performed well in an exam that brought together students from the whole district. I hadn’t always performed well before and I hadn’t been remotely aware that I could do well in mathematics. However, once I topped that exam, there was no going back. My mathematics teacher had taken notice that I could do well in mathematics, and he kept me on my toes. With more effort, I found the subject easier and more enjoyable than the rest. I enjoyed calculating sums and rejoiced when I got them right. It was as though a new world had opened up for me and the escape I found within it brought me peace. I also enjoyed teaching my classmates the concepts which they found difficult. In a way, my destiny had been sealed.

At higher levels of study, the main challenges we faced were a lack of resources and scarcity in the woman role models that we could look up to.

I must admit that the journey hasn’t always been easy. Much as the teachers encouraged us and pushed us to work hard, it wasn’t often easy to see the future that they envisioned. It was tough growing up in a village which had been ravaged by HIV/AIDS. Most of us were being raised up by grandmothers who were now frail. As my mother had died when I was eight years old, I had to rely on bursaries and scholarships to get through most of my schooling. It also wasn’t common for girls to love mathematics or to excel in it, and so, negative remarks were often made about mathematics. A narrative was pushed that mathematics was meant for boys, and that girls who loved it were to be feared. But the love, passion, and the escape that mathematics provided, together with the pressure and encouragement from the teachers, was enough to help me push through.

At higher levels of study, the main challenges we faced were a lack of resources and scarcity in the woman role models that we could look up to. We got to learn essential skills like programming so late, and even then, most of what we learned was theoretical. As such, we did not have the full knowledge required to forge forward in mathematics. Our knowledge about possible career avenues was also limited. In graduate school, I have struggled with imposter syndrome, a feeling that you are not worthy. Sharing this experience with a few colleagues has led me to the realisation that most of us struggle sometimes, especially those who came from humble backgrounds. My friends and colleagues have taught me to push back that negative voice and to often remember how far we have come.

To me, knowing these incredible women, and knowing that they, just like me, have overcome so much to get to where they are, is a testament that women are capable of extraordinary achievements in mathematics and other STEM-related areas.

There have been notable influences without which I couldn’t have reached this far. Attending the African Institute for Mathematical Sciences (AIMS) opened my eyes to the vast areas of applicability in mathematics. The networks they provided have proved invaluable. It was great getting to meet other women from Africa and finding out that we all had similar challenges growing up, and yet, with persistence and a little luck in terms of scholarships, we managed to push through. We could now cultivate and find inspiration amongst ourselves. I know that there are many heroes in the world of mathematics, but those who inspired me the most were peers I met during graduate school. I get inspired every day by exemplary woman peers who have gone ahead of me and attained their doctorates in mathematics. To me, knowing these incredible women, and knowing that they, just like me, have overcome so much to get to where they are, is a testament that women are capable of extraordinary achievements in mathematics and other STEM-related areas.

As such, it is imperative to teach our girls from early on that their gender does not prohibit them from excelling in the sciences or any career that has traditionally been set aside for the men. It should be our prerogative to instill in them that they too can be at the core of discoveries in mathematics, physics, chemistry, biology and engineering and that they can become whatever they dream and work hard towards. Girls need to know that there is much more that they can achieve in life if they work hard towards it. I am grateful to forums like Her Maths Story for highlighting our stories and for working towards changing the narrative.

Posted by HMS in Stories
Karrie Liu

Karrie Liu

Born in Hong Kong • Studied Mathematics at University of York, UK • Highest Degree MSc in Applied Mathematics • Lives in London, UK • Occupation Freelance Mathematician / Founder of an analytical advisory company

Growing up in two distinct family cultures (Chinese parents in Hong Kong and “adoptive” English parents in the UK), I noticed that girls weren’t often encouraged in the same way that boys were. Many Asian parents would prefer that their daughters marry and focus on family rather than pursuing studies in higher education. Due to this, I wish to be a role model to younger generations, especially girls, so that they may be inspired and have the courage to follow their dreams. My ultimate goal is to improve the world through maths, data science and technology. Hence, that is why I set up an analytical consultancy company called the analytical advisory company Hypatia Analytics Ltd in 2019, which allowed me to spend more time on different types of charity work.

My ultimate goal is to improve the world through maths, data science and technology.

Since graduating from university, I have been applying my skills to continuously show people how they can use mathematics in healthcare and life sciences. During my tenure at the National Health Service (NHS), I participated in several diversity and equality projects. The NHS lacks information on ethnicity and I noticed that researchers had to use the general label “South Asian Name programme” to gather more details. I headlined a project discovering whether extra details can improve the name-test accuracy and to carry out diagnostics tests using patients’ self-reported ethnicity as the standard compared to test results. The outcome has been widely adopted in the Bradford/Leicester council area, improving NHS data and enabling valuable insights for local health economics planning.

Since data science is a relatively new type of career, many people haven’t yet fully understood why it is needed and how to apply it in the real world. Education is the key for people who want to be specialized professionals, but they also need to make the field accessible to the general population. My role as a trustee at The Institute of Mathematics and its Applications (IMA) allowed me to chair three national conferences to showcase how mathematics can be used with data science and helping others to get more help from the industry. 

My company [..] acts as an analytical advisor for charities providing statistical support for clean water programmes, using data science and technology to improve design and optimise resources needed to implement systems.

Skill-based volunteering is also very close to my heart; with my company Hypatia Analytics Ltd I have had the opportunity to voluntarily lead tech and maths projects engaging with the public and different charity organisations. Hypatia Analytics Ltd acts as an analytical advisor for charities providing statistical support for clean water programmes, using data science and technology to improve design and optimise resources needed to implement systems. The charity’s aim is for people’s lives to improve from having clean water close to their home. Hence, more children have time to attend school and the prevalence of illnesses is decreased.

In the summer of 2021, Hypatia Analytics Ltd in partnership with a charity promoting mathematics set up a Math & Data Summer programme called “Discover Data”. This program is a series of introductory workshops on how applied mathematics with real-world evidence can be used to address the world’s problems to students aged 14-17. However, the program  did not stop there, it had set up a monthly meeting to teach more, and we are now planning Summer 2022 face-to-face workshop.

I believe data and mathematics are at the heart of better decision-making and hope that people can benefit from it.

Posted by HMS in Stories