Empowerment

Sanchita Chakraborty

Sanchita Chakraborty

Born in Bolpur, West Bengal, India • Birth year 1999 Studies Mathematics at Purdue University in West Lafayette, Indiana, USA • Highest Degree ongoing Bachelors of Science • Lives in West Lafayette, Indiana, USA • Occupation Student Researcher and Undergraduate Student

I always loved how neat math was. No matter the problem, the answers seem to come with a simple number. After taking partial differential equations and numerical analysis courses, it seems so silly now, the subject is anything but “neat”. It is complex, chaotic, and elegant, but what I have come to appreciate is its beauty, its ability to explain the world around us.

When I imagined a mathematician, I thought of an old man sitting in a flickering candle-lit room with melted wax and papers strewn around on an old wooden table. What did that really mean in the era of supercomputers, high-speed trains, planes and rockets?

As a child, I never really thought of being a mathematician as a job to pursue. I mean, to be fair the greats that I knew of only existed in Ancient Greece or Rome. When I imagined a mathematician, I thought of an old man sitting in a flickering candle-lit room with melted wax and papers strewn around on an old wooden table. What did that really mean in the era of supercomputers, high-speed trains, planes and rockets?

[..], I took the route of role models like Howard Wolowitz from the Big Bang Theory and Dr. Amelia Brand from Interstellar, and chose a degree in Aerospace Engineering.

So, when I had to choose a degree to study, I took the route of role models like Howard Wolowitz from the Big Bang Theory and Dr. Amelia Brand from Interstellar, and chose a degree in Aerospace Engineering. When I entered, I was excited by the engaging new problems I would learn to solve – whether it was in understanding rocket propulsion or in the use of orbital mechanics within navigation. However, instead I became bogged down with solving mundane structures and material problems. Moving into my sophomore year, classes did become more interesting with my first fluids and orbital courses. Every time I stepped into an engineering classroom, I felt a sense of excitement in understanding the fundamental equations, rather than the applications to real-world problems.

While I had once run away from engineering, I found myself right back to where I began, but instead I was in the role of a mathematician.

I reflected on my prior math courses, thinking about how I would apply these geometric properties and analysis techniques to problems that I had been introduced to in my aerospace courses. I knew it was time for a change, so I switched gears to classes like complex analysis, partial differential equations, and introduction to proofs. I was hooked. Around the same time, I had my first laboratory experience in mathematics. I spent the summer working on neural networks to reduce the loss from the 2D approximations to the advection-diffusion equation in transport phenomena. It was one of the hardest learning experiences, coming in with very little knowledge of Deep Learning, but the hours spent on literature reviews seemed less like work and more like unravelling my favorite mystery novel. This was the moment in which the puzzle pieces of all my interests across engineering and mathematical disciplines clicked.  So when I finished my summer project, I immediately looked for new opportunities in applied mathematics, and I was fortunate enough to find a supervisor in the Electrical and Computer Engineering department to work on Finite Element Methods and the Schrödinger equation. While I had once run away from engineering, I found myself right back to where I began, but instead I was in the role of a mathematician. My supervisor has helped me find confidence in my abilities and given me the opportunity to take lead on my first project, and is the reason I have found the confidence to apply to applied math MS/PhD programs for fall 2022.

I had women like Katherine Johnson to look up to, but she was merely a role model, not an individual I could tangibly connect to.

While I have been undoubtedly lucky to be surrounded by amazing mentors, the lack of women mathematicians and engineers did not go unnoticed. I found my experiences to be hardly unique. When talking to a good friend in the math department, I found that she too had been the only woman in her math classes. In four years, I had only had one woman math professor and one woman graduate student that supervised my research. In my graduate and advanced courses, I was one of two or maybe three women students. The world had long moved away from the old man in the candle-lit room, but the representation of women in the industry was grossly underdeveloped. Looking at research faculty in the graduate programs I applied to, I found the representation to be quite similar. I had women like Katherine Johnson to look up to, but she was merely a role model, not an individual I could tangibly connect to. She seemed just as far remote as the Greek greats.

Inequality seems to be quite an abstract notion and equality just an idealized concept, existing only in philosophical treatises. To encourage more women to pursue a career in academia and research, we must begin by creating real mentor-mentee relationships that go far beyond the professional. Only through this tangible bond can we expect to see true equality in every field, including this complex and elegant language we hold so close and I sincerely hope that one day the word mathematician comes with an image of a woman and a man working side by side in a world intertwined with modern technology.

Posted by HMS in Stories
Angela Tabiri

Angela Tabiri

Born in Tema, Ghana • Studied Mathematics at the University of Glasgow, UK • Highest Degree PhD in Mathematics • Lives in Accra, Ghana • Occupation Lecturer

Growing up in Accra, Ghana, I loved mathematics. I found joy in solving mathematics questions but I did not envision a career in mathematics as a thing for me. My older sisters studied business courses at the university so I decided to follow in their footsteps and applied to study Business Administration as my first choice course at the University of Ghana. Fortunately or unfortunately, I could not gain admission for my first choice program and had to settle for my second choice which was mathematics and economics. Nevertheless, I loved the challenge mathematics presented. I had to spend hours after lectures revising lecture notes and solving exercises. I found this thrilling.

My motivation for giving back to the community where I grew up was to give students from less privileged backgrounds access to quality education.

After undergraduate studies, I went to the African Institute for Mathematical Sciences (AIMS) Ghana for postgraduate studies. It was at AIMS that I got exposed to different fields of mathematics. From AIMS Ghana, I went to the International Centre for Theoretical Physics (ICTP) for a postgraduate diploma in mathematics. The program at ICTP was very challenging but it helped convince me that I could pursue mathematics further.

After postgraduate studies, I became conscious of the opportunities available when one studies mathematics. Prior to this, most of us thought anyone who studied mathematics at the university would end up as a teacher. This is not to say that teaching is not a good profession, I love teaching. When I realised the many opportunities available after postgraduate studies, I volunteered as a mathematics teacher in a junior secondary school in my community. This would inspire the young students that mathematics is not impossible to study as perceived and one could pursue a career in mathematics. In subsequent years, I volunteered as a mathematics teacher for at least a month and donated books to the library of this school. My motivation for giving back to the community where I grew up was to give students from less privileged backgrounds access to quality education.

My research interest is in noncommutative algebras which are abstract analogues of subtraction and division.

I was awarded a Schlumberger Foundation Faculty for the Future Fellowship in 2015 to pursue PhD in Mathematics studies at the University of Glasgow (UofG). In 2019, I graduated with a PhD in Mathematics from UofG, returned to my home country Ghana and started working as a postdoctoral fellow at AIMS Ghana. I am currently a research associate and academic manager for the Girls in Mathematical Sciences Program (GMSP) at AIMS Ghana. I decided to pursue a career in academia because I love teaching and doing research.

A summary of my research interest is as follows. Consider the operations of addition and multiplication, it does not matter the order in which you perform them. That is, 2 + 3 = 3 + 2 and 2 × 3 = 3 × 2. In mathematics, we call this the commutative property. However, the operations of subtraction and division are not commutative. That is 2 − 3 is not equal to 3 − 2 and 2 ÷ 3 is not equal to 3 ÷ 2. We say that subtraction and division are noncommutative. My research interest is in noncommutative algebras which are abstract analogues of subtraction and division. For any shape that you can draw on a flat surface whereby the shape can be described by an equation, we investigate whether we can put a noncommutative structure on the shape to make it a quantum homogeneous space. This area of research is abstract but our hope is that there will be useful applications of our results in a few years time.

Our mission is to inspire young girls about the diverse career options available when you study mathematics and our vision is to see girls being confident to pursue a career in mathematics and related fields.

I am passionate about supporting and promoting women in mathematics which ties in well with my new role as the academic manager for the GMSP. The GMSP is a hybrid 9 month program for high school girls from Ghana to nurture their talents in the mathematical sciences. We meet students monthly online for masterclasses with experts in different fields of mathematics. Then during vacations from school, the students visit the AIMS Ghana campus for residentials where minicourses in mathematics, industrial visits, interactions with mentors and extracurricular activities are undertaken.

I am also the founder of Femafricmaths, a charity that promotes female African mathematicians. We host guests by interviewing them about their journeys with mathematics and share the videos on the Femafricmaths social media pages. Our mission is to inspire young girls about the diverse career options available when you study mathematics and our vision is to see girls being confident to pursue a career in mathematics and related fields.

There are few of us and we need to ensure that barriers are removed so more women can pursue careers in mathematics.

Mentors have played a critical role in my academic and professional journeys. Ken, Ulrich, Prince and Chelsea have been phenomenal mentors who mentor me every step along the way. I have also benefited from the Women in Noncommutative Algebra and Representation Theory (WINART) research group. This is a collaboration between women in mathematics from different universities. I learnt a lot working with this research group comprising both early career and established mathematics.

It is important to be intentional about creating opportunities for women in mathematics. There are few of us and we need to ensure that barriers are removed so more women can pursue careers in mathematics. I was awarded a Schlumberger Foundation Faculty for the Future Fellowship for my PhD studies. This fellowship is for women in STEM from developing countries to enable us to study at top universities abroad and return to our home countries to support teaching and research. It would have been challenging to find other sources of funding for my PhD if I had not been awarded this fellowship by the Schlumberger Foundation.

Link:
Femafricmaths – Female African Mathematicians

Posted by HMS in Stories
Pamela  Estephania Harris

Pamela Estephania Harris

Born in Guadalajara, Jalisco, Mexico • Birth year 1983 Studied Mathematics at University of Wisconsin, Milwaukee in Milwaukee, WI, USA • Highest degree PhD in Mathematics • Lives in North Adams, MA, USA • Occupation Mathematics Professor

My love for math faded during my high school years. Being undocumented, living in the United States was challenging. Even though I was doing well academically, I thought I might never have the opportunity to attend college. I was sad, and at that time I turned to art as an outlet to deal with the challenges I was facing. I spent most of my senior year in high school in an art studio. I spent countless hours learning to draw, paint, and sculpt. I even dropped out of my calculus class just so that I could have more time to do art. I do not regret that choice, even though going a year without math courses hurt my mathematical skills. At the time, I needed something to help me deal with the anxiety and sadness I was experiencing, and art served me well. 

There I had a meeting where my mentor said “when you go to graduate school”. I had no idea what graduate school was, but I knew that if she believed in me, then I should go to graduate school.

After graduating high school, I was able to enter community college. How that was possible is a story for another day, but the main thing is that, upon entering the program, my mathematical skills were well below calculus. My first college math course was intermediate algebra, where I (re?)learned how to factor polynomials. I vividly remember that day’s lesson where the professor said “To factor x^2+5x+6 we need to find two numbers that add to 5 and multiply to 6.” I immediately raised my hand, proudly announcing that numbers did not do that. How can two numbers multiply and add to something different? Luckily, the professor was very kind and she allowed me to think of examples. After discovering that 2 and 3 did the trick, I felt such joy in understanding something that I had taken for granted: numbers are amazing and in fact multiplication and addition are two distinct things! From there my story began to take shape. 

After intermediate algebra I took all of the math courses the community college offered and later transferred to a four-year college to continue studying math. There I had a meeting where my mentor said “when you go to graduate school”. I had no idea what graduate school was, but I knew that if she believed in me, then I should go to graduate school. So, on I went! 

My professional mission is to ensure that mathematics is a welcoming place for everyone, and I am eager to keep working on this for as long as I live.

I always knew that I would like to be a teacher. There is something so beautiful about seeing someone understand something. Most people call that an “aha” moment, and it truly is special. I also knew that education is a path out of poverty and into opportunity. Being an immigrant, I knew firsthand that having options is one key component to a happy life. So, I have always wanted to help others reach their goals and attain their dreams. However, it was not until almost the completion of my PhD that I decided to be a college professor. Finding this as a career option was great because it has allowed me to continue learning while doing research and teaching students. Creating new programs and platforms that provide mentorship and support for students from groups who have been historically excluded from higher education has also been deeply fulfilling. This outreach work keeps me grounded and reminds me that there is still a lot of work to be done in order for everyone to have meaningful and positive experiences with mathematics. My professional mission is to ensure that mathematics is a welcoming place for everyone, and I am eager to keep working on this for as long as I live. 

Throughout those early years I could have used a larger community of support and to see others like me occupy positions and careers like those I had an interest in.

Being an immigrant, previously undocumented, and a Latina woman meant I rarely saw people like me in mathematics. Throughout those early years I could have used a larger community of support and to see others like me occupy positions and careers like those I had an interest in. Sadly, it took a long time to find a community of scholars who shared similar backgrounds and heritage. Yet this motivated much of my past work and inspired me and Drs. Alexander Diaz-Lopez, Alicia Prieto Langarica, and Gabriel Sosa to co-found the organization Lathisms: Latinxs and Hispanics in the Mathematical Sciences. Our goal is to share and amplify the contributions of Latinx/Hispanic scholars in math. We do this through a variety of means including Hispanic Heritage Month (in the US it is celebrated between September 15 and October 15) events, a podcast, and even a new book — Testimonios: Stories of Latinx and Hispanic Mathematicians. The book’s chapters will be freely available one per month starting in September 2021 and our hope is that this book provides a way for those within the community to learn of our stories while also giving advice to those who want to learn more about us and how to support our work. Although there is much work to be done so that those from historically excluded groups feel valued and uplifted in mathematics, I am hopeful that initiatives like Lathisms are making this reality possible.

Links:
Lathisms: Latinxs and Hispanics in the Mathematical Sciences
Testimonios: Stories of Latinx and Hispanic Mathematicians

Posted by HMS in Stories
Candice Price

Candice Price

Born in Long Beach, CA, USA • Birth year 1980 • Studied Mathematics at The University of Iowa in Iowa City, IA, USA • Highest Degree PhD in Mathematics • Lives in Northampton, MA, USA • Occupation Assistant Professor of Mathematics at Smith College

I first fell in love with mathematics in the 3rd grade. It was by pure coincidence though. You see in the 3rd grade I learned how to multiply. Now we did not learn through the tangible way of repeated addition, but with music and memorization. Both of these pedagogical choices stimulated my interest in two ways: my love of music and my competitiveness. Let me elaborate a bit about this.

My whole family is very musical. My maternal grandfather was in a DooWop group named “The Mellows”. He taught my mother to sing, which translated to me singing in the church choir with my siblings. My father constantly played music in our home, especially on his record player. My sister and brother made music a part of their careers and I listen to music any chance I get. Needless to say music played a huge positive role in my life, and still does. So when my teacher played the SchoolHouse Rock multiplication videos for us in class, I was instantly sold! I still sing the song “3 is a magic number” sometimes. I got to see that music could play a large role in learning mathematics. It made mathematics fun and enjoyable. It also helped me memorize the multiplication table because I had memorized the lyrics. This helped with my competitive nature.

Looking at those celebrated in mathematics, I didn’t see someone that looked like me.

I think it is no secret that when learning multiplication, students are often subjected to timed “times table” tests. This was a test or quiz or even just an assignment where you had to fill out a sheet of multiplication problems in maybe around 5 minutes. Oddly, I thrived on this type of competition. It wasn’t a competition with my classmates, but a competition with myself. How many “times-tables” could I remember? How fast could I write them all down? Would I improve my previous score? I think this competitive nature pushed me to love the act of learning, keeping me excited about understanding things at a deeper level. I will also say that this competitive nature has also led to my trivia team, Juneteenth Wreath LLC, being 4 time trivia champs across 2 different platforms #humblebrag.

While this was the first experience I had that created a love of mathematics, I didn’t stay in love. I have walked away from mathematics when I felt that it was not the place for me. Looking at those celebrated in mathematics, I didn’t see someone that looked like me. I assumed that meant that no matter how much I loved math, it did not love me back. (I was a bit of a dramatic teenager.) While I came back to mathematics and made it my career, it wasn’t until recently that I felt like I had a place in mathematics. I would often tell folks “I am a mathematics professor, but I don’t see myself as a mathematician”. The distinction was that while I enjoyed teaching and talking about mathematics, did I think about it on the level that most “mathematicians” do? No. I didn’t enjoy research too much, although I loved working with my collaborators. I didn’t enjoy watching research talks, unless I knew the speaker. I would also be so nervous giving talks, always a bit unsure if I was painting the correct picture. But recently this has all changed.

If today Candice could talk to 3rd grade Candice about this great path through mathematics she is going to venture on, I would tell her about the ups and downs.

I have met so many amazing people who are also mathematicians. Many, but not all, are from minoritized groups in the mathematics community, all forging ahead creating their own definition of what it means to be a mathematician. This community helped me finish my PhD in Mathematics at the University of Iowa, supported me through my postdoctoral work at the United States Military Academy at West Point, and been a great guide through multiple career decisions/milestones I have made/passed, including starting a tenure track position at Smith College and receiving tenure and promotion. If today Candice could talk to 3rd grade Candice about this great path through mathematics she is going to venture on, I would tell her about the ups and downs. Let her know that she is stronger and more clever than she knows. And that she is a mathematician, that she became one that day. I would also give her a small reminder that it is ok to not always be super excited about something– except for music, that is a love that never dies.

Posted by HMS in Stories
Joana Sarah Grah

Joana Sarah Grah

Born in Germany • Birth year 1987 • Studied Mathematics in Münster, Germany • Highest Degree PhD in Applied Mathematics from the University of Cambridge, UK • Lives in Düsseldorf, Germany • Occupation Scientific Associate

My decision to study mathematics was anything but straightforward. I always enjoyed maths classes throughout my primary and secondary school years. I also have to add that I personally believe this experience was significantly influenced by the fact that I had great maths teachers. Luckily, against a sadly very common (mis)perception of society I never felt that maths was not for girls. Maybe this was unconsciously strengthened by the female maths teachers I had in early school years. Shortly before my last two years of secondary school began, I decided against choosing mathematics as a major (which always seemed to be clear beforehand) because I did not enjoy the maths classes I attended in the preceding year. Nevertheless, I very much enjoyed the following two years of maths classes, which is among other things certainly due to the amazing teacher (and possibly first maths mentor) I had. From the beginning, he made quite clear that he did not really understand why I only chose maths as a minor, but he would motivate, encourage and challenge me even more throughout the two years. He also was one of the few persons I could consult when I was thinking about applying to study maths at university.

In the end, (…) I decided to study maths but was pretty much clueless about how a typical workday of a student even looked.

I was the first family member to attend university, let alone having received a university-entrance diploma, and so my family could not really provide me with a lot of advice or experience in this regard. However, they were incredibly supportive in multiple other ways throughout my studies and without their support I certainly wouldn’t be where I am now.
In the end, after considering other options such as linguistics and language studies, I decided to study maths but was pretty much clueless about how a typical workday of a student even looked. At first, I thought it was sufficient to attend the lectures (like the classes in school) and go home after. This also fit snugly with the hours I had to work in my side-job. The ‘homework’ was surely very similar to the one at school and I would just solve the mathematical problems we were given by myself like I did in school. Preparing for the exams would certainly be similar to schooldays and I would not have to study too hard. It did not take too long until I realised that I was completely wrong. The first unsuccessful exams hit me quite hard and ultimately, I found myself in a situation that I had not known up to this point in my life. It was already pretty late to turn things around completely and after many thoughts and conversations, I decided to start all over again one year later.

It is essential to have role models to look up to from the beginning and ideally to be mentored and supported by experienced and committed persons. I am extremely lucky and thankful to have those people in my life.

The further I got and also the more I was able to specialise in my studies, the more I enjoyed student life. I was lucky enough to have a strong and supportive network of fellow students and friends. What is more, especially in the final year of my Bachelor’s, I had two extremely dedicated, passionate and encouraging advisers, one of which was going to become one of my main mentors throughout my academic career. And this is the main message I would like to convey here. It is essential to have role models to look up to from the beginning and ideally to be mentored and supported by experienced and committed persons. I am extremely lucky and thankful to have those people in my life. In addition to my Bachelor’s and Master’s supervisor, I had two incredibly supportive, heartening and inspiring women as a PhD supervisor and co-supervisor. I believe that my passion for women encouragement was significantly influenced by my main PhD supervisor who herself has given numerous talks on her own experiences as a woman in maths, her career path and her very personal journey to become an excelling mathematician and leader.

We realised that we were not alone with our struggles and doubts and this was extremely liberating and empowering.

Already during my Master’s, I participated in a mentoring programme that was coined by a very committed (male!) diversity officer at our maths department. We had regular meetings in small groups of three mentees and one mentor who was a female PhD student. We were able to informally chat about positive and negative experiences, the decision whether to continue as a PhD student or search for a job in industry and how being a woman in a still male-dominated field poses some challenges. We realised that we were not alone with our struggles and doubts and this was extremely liberating and empowering.

Without all of this amazing support and encouragement I am 100% sure that I would not have continued doing a Master’s respectively PhD respectively post-doc, as I have fairly often thought about quitting at various points in my career. In the end, persevering, listening to my mentors and believing in myself was worthwhile. Nowadays, I try to identify situations in which I observe sexism, female students and colleagues struggling with imposter syndrome, or simply the exhausting and competitive environment that academia sometimes is. Then I try to speak out or even manage to become a mentor myself.

My PhD research was in applied mathematics. More specifically, in one of my main projects I developed mathematical image analysis tools for an application in cancer research. In an interdisciplinary collaboration I worked with biologists that studied the efficacy of anti-mitotic drugs trying to slow down or prevent mitosis, the process of cell division, in cancer cells. I developed a graphical user interface that facilitated the automatic analysis of sequences of microscopy images showing the treated cells over time.

I loved the communication part of post-grad academic life; not only discussions and exchanges, but also communicating my work to others at conferences, workshops and during outreach projects. 

I always liked collaborations in my academic career and I believe that against all stereotypes, at least applied maths is a very team-oriented discipline and it is essential to discuss lectures, papers and ideas with fellow students and colleagues. I loved the communication part of post-grad academic life; not only discussions and exchanges, but also communicating my work to others at conferences, workshops and during outreach projects. Recently, I even quit research and started working as a scientific associate at university focusing on science communication as well as education.

Posted by HMS in Stories