Born in Jeju, South Korea • Studied Mathematics Education at Jeju National University in Jeju, South Korea • PhD in Mathematics from Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, South Korea • Lives in Graz, Austria • Full Professor at Graz University of Technology (TU Graz)
In a way, becoming a Professor of Mathematics was probably always on the cards for me. Even as a child, the only subject I remember enjoying at school was mathematics and so pursuing higher education in this field felt natural.
I had both my parents’ support and encouragement to pursue this path in life. My father, a professor himself, gave me an early insight into the profession and all it entails. What I saw was mostly positive and so it was maybe no big surprise that I ended up in academia as well.
After finishing my PhD in 2001, I made my way to Berlin, Germany, to become a Postdoc at Humboldt University. Almost everything there – maths, academic culture, language, people’s attitude, as well as everyday life outside the university – was new and sometimes challenging to me, but I loved it. In this new world I could be what I was, without feeling the need to try to overly adjust myself to the standards and expectations of society.
I spent ten years in Germany, managing to progress from a postdoc to Heisenberg Fellow and then to Acting Professor at the University of Munich. I also used this time to learn the German language, which I now speak fluently. But I must say it took quite a few years to be able to teach in German, because the language of maths research is English and I taught only small Master’s courses, also in English.
Only later, when I started to teach Bachelor’s courses in German for engineering students and took part in academic administration as a Senate member of TU Graz, did I become more confident in using German in teaching and daily discussions.
I believe my approach of bridging multiple fields has contributed greatly to my career success, as it allows me to be more inventive and recognise patterns among seemingly different objects and mathematical behaviours that can only be discovered by thinking in an interdisciplinary manner.
For the past 13 years I have been a full professor at TU Graz in Austria, where I lead the Combinatorics Group. In my work, I draw inspiration from many neighbouring disciplines. My main research is centered around the phase transition phenomenon, partly because it appears in many different disciplines, including combinatorics, discrete probability, computer science, statistical physics, and network sciences. In fact, this phenomenon is almost everywhere including daily life, e.g., the change from ice to water and then to gas.
I believe my approach of bridging multiple fields has contributed greatly to my career success, as it allows me to be more inventive and recognise patterns among seemingly different objects and mathematical behaviours that can only be discovered by thinking in an interdisciplinary manner.
Doing research in mathematics involves a lot of collaboration with mathematicians from all over the world. I greatly enjoy discussions with mathematicians from different mathematical and cultural backgrounds.
Although mathematics may appear too abstract and detached from real life to most people, everybody has been exposed to hot topics such as digital security or artificial intelligence, which, in fact, rely heavily on progress in mathematics.
In addition to being part of this international network, my participation in the SFB (Research Network) “Discrete random structures: enumeration and scaling limits” – supported by a science and research funding organization in Austria – gives me a rewarding opportunity to forge closer collaborations with mathematicians coming from top universities in Austria. This research network brings together researchers from the fields of combinatorics and probability and even touches on areas such as quantum physics.
Although mathematics may appear too abstract and detached from real life to most people, everybody has been exposed to hot topics such as digital security or artificial intelligence, which, in fact, rely heavily on progress in mathematics. I therefore strongly believe that maths is invaluable to our society and a field worth pursuing a career in.
Date published: Sep 03, 2025
Image credit: TU Graz


Recent Comments