Academia

Kateryna Marynets

Kateryna Marynets

Born in Uzhhorod, Ukraine • Birth year 1988 • Studied Applied Mathematics at Uzhhorod National University in Ukraine • Highest Degree PhD in Differential Equations from Taras Shevchenko National University of Kyiv in Ukraine • Lives in Delft, The Netherlands • Occupation Assistant Professor in Applied Mathematics at Delft Institute of Applied Mathematics, Delft University of Technology

4 countries, 5 languages, and 1 mathematics…

Was it my big dream to pursue a career as a math professor? No, it wasn’t. In fact, when our primary school teacher asked who we wanted to become in the future, I said that I wanted to be a pediatrician. But that was only because my parents are doctors, and my grandmother was leading the children’s department in the hospital at that time. To be honest, medicine has never been my thing—but as a kid, you tend to take on the role models you see around you. And I wasn’t an exception.

Many years have passed, and mathematics and languages have become inseparable parts of my life.

In Ukraine, we say that children inherit the talents of their grandparents. And with my grandparents working in the fields of physics and mathematics, following that logic, I was probably predestined for these directions. Interestingly enough, those were indeed my favorite subjects at school. I really enjoyed solving math puzzles and diving into the laws of physics. I was extremely lucky to have great teachers who recognized my interest and kept me engaged by offering challenging problems—even though my school had a linguistic focus, and the sciences didn’t occupy much of our curriculum. Many years have passed, and mathematics and languages have become inseparable parts of my life. Those seemingly different disciplines have a lot in common: languages help in sharing my mathematical expertise to a multilingual community, and logical thinking, developed through solving mathematical problems, helps in mastering a new language.

Obtaining a PhD brought new opportunities, but it also came with a lot of pressure—pressure to deliver, pressure not to disappoint.

The path to my current position was long and quite “nonlinear”—just like the math problems I work on. In my last year of high school, I seriously considered studying international economic relations, with applied mathematics as a second option. It was the study program where I could combine my passion for mathematics and foreign languages. But in the end, I chose applied mathematics, and I’ve never regretted the decision I made.

After graduation, I was offered a teaching position at my home university, which I combined with enrollment in a doctoral program. I studied boundary value problems for systems of nonlinear differential equations and developed iterative methods for approximating their solutions. It was a great combination of analysis and work with mathematical software—something I still enjoy doing. Back then, I could conduct research at my home institution but had to defend my thesis at a different university. I still remember all those trips to Kyiv, accompanied by my parents, who helped me organize everything…I am incredibly thankful for all their patience and time that they have invested.

Obtaining a PhD brought new opportunities, but it also came with a lot of pressure—pressure to deliver, pressure not to disappoint. Since then, sports has become my first aid when I feel overwhelmed and need to change my focus during the intense periods at work.

[Fractional differential] equations are broadly used in porous media modeling and systems with memory

After graduation, and having 3 languages ‘in my pocket’, I continued teaching at my home university for a couple of years but felt an urgent need for change. I seriously considered switching to industry and even received an offer from an IT company, but something held me back. Around that time, I won an individual grant for a short-term research stay in Slovakia, where I was introduced to a new field—fractional differential equations. These equations are broadly used in porous media modeling and systems with memory. Moreover, they are able to capture more complex dynamics of a physical system in comparison to their integer-order counterparts. Back then it was still a completely unfamiliar topic for me, something I had never worked on before, but it eventually became part of my current research profile.

My time in Bratislava was a period of reflection, and it gave me the motivation to continue pursuing an academic career. I saw many opportunities that European universities offered and started applying for postdocs. Among all the negative responses and unanswered emails, there was one that changed my life. I got a postdoc position in Vienna, which I still consider my biggest achievement to date. It might sound silly but moving from Uzhhorod, that is by the way famous for its Japanese cherry blossom, to join one of the oldest and most prestigious universities in Austria was something I couldn’t have even dreamed of!

Picture of a Japanese cherry blossom

During my postdoc, I explored real-world applications of differential equations by analyzing mathematical models related to ocean and atmospheric circulation

During my postdoc, I explored real-world applications of differential equations by analyzing mathematical models related to ocean and atmospheric circulation. I was fascinated by the opportunity to apply my mathematical training to real-world phenomena, expanding my knowledge beyond purely theoretical research. As time passed and my postdoc was nearing its end, I realized I needed something more permanent. And again, I stood at a crossroads: should I switch to industry and stay in Austria with my partner, or pursue a career in academia but accept the fact that I would likely have to move to a third country within the last three years? I know many couples for whom cross-country moves didn’t work out, and in the meantime I was already fluent in German and had good chances on the Austrian labor market. Luckily, my partner was incredibly supportive, and when I got an offer from TU Delft, he did everything he could to make my decision easier.

And here we are. Five and a half years after moving, I’m now a tenured assistant professor at one of the best universities in the Netherlands, developing my own research line in nonlinear (fractional) differential equations with applications in geosciences, speaking my fifth language, and making future plans with my husband. Time has sorted out everything, and despite all difficulties I feel that I am in the right place.

Of course, at the end of the day it’s all about hard work, determination and family support —but sometimes, it’s also about that one email that changes everything in your life.

Published on April 23, 2025.

Photo credit: Kateryna Marynets

Posted by HMS in Stories
JoAnne Growney

JoAnne Growney

Born in rural Pennsylvania in 1940 • Studied PhD in Mathematics at University of Oklahoma, United States • Lives in United States • Occupation Taught mathematics at Bloomsburg (PA) University (now part of Commonwealth University); now retired

Before I was a math girl, I was a farm girl – the oldest of three children growing up on a farm in Pennsylvania —  the one who went to the barn with her father while her mother took care of the little ones.

Math (often numbers and counting) was an inconspicuous but central part of farming – counting eggs as I collected them from beneath the hens, counting the sheep as they came into shelter at night to make sure that none had drifted away.  Geometric quantities also were important – the volumes of harvested grains and fruit, the distances between parallel rows of corn, the gallons of milk expected from our Guernsey cow which I milked morning and evening.

My teacher, a graduate of an elite college and unashamed of her math ability, was an energetic and supportive example of “girls can do math.”

Perhaps my farm experience helped me to be good at math – and that skill seemed fine in elementary school years but as my classmates and I moved through high school my female math ability seemed to make people turn away from me.  In my senior year, I was one of only three girls in my math classes.  BUT that year I also had an inspiring experience.  My teacher, a graduate of an elite college and unashamed of her math ability, was an energetic and supportive example of “girls can do math.”

Receipt of a scholarship from Westminster College in New Wilmington, Pennsylvania, enabled me to go away from home to continue my education.  (To my dismay, at Westminster I had several “only girl in the class” experiences.)  I started out as a chemistry major but, during my sophomore year. I learned that my “science scholarship” could be used toward a math major and then (preferring math to chemistry) I switched, combining studies of math with secondary education. AND I took creative writing courses and had work published in the campus literary journal. In those days (early 1960’s), many jobs were not available to women – but teaching was.

Graduation from Westminster led to marriage, to secondary school teaching in the Philadelphia area, to evening graduate classes at Temple University – from which I obtained an MA in Mathematics.  My husband (Wallace/Wally) – who had studied physics and math and a bit of computer science – took a job at Susquehanna University in Selinsgrove, PA.  I did some part-time teaching at Susquehanna and at nearby Bucknell – but soon we moved to Norman, Oklahoma where Wally would pursue a doctorate so that he could qualify for tenure at Susquehanna. While we were in Oklahoma, with lots of time on my hands, I was able to attain a teaching assistantship and continue my studies also. 

One of the requirements for mathematics professors at Bloomsburg University was to teach “general education” courses for non-majors and this experience led me to write and publish a textbook entitled Mathematics in Daily Life – a book containing material that engaged students in mathematical reasoning related to counting, voting, travel, decision-making, and other frequent concerns. 

Graduate school brought complications to our marriage. In our earlier studies, I had gotten better grades but we credited it to his sports and fraternity activities – AND, I studied more carefully. But at The University of Oklahoma, it became evident that I was the better student and, eventually, that caused stress for both of us. I became his helper. We studied together. During our work on dissertations, I became pregnant. When our doctoral studies were completed, we returned to Pennsylvania, bringing with us a baby daughter.  I secured a tenure-track position at nearby Bloomsburg State College (now part of Commonwealth University).  AND I was able to keep my on-campus schedule to three days per week and to find excellent child care; our care-giver, Erma, was loving and dependable. Our family grew with another childbirth and two adoptions.

Keeping busy helped our marriage survive but over time we began to recognize that things weren’t working and weren’t repairable. This eventually led to divorce and to me and the kids moving to the town of Bloomsburg (and to me avoiding the 30-mile commute).  My time in Bloomsburg involved congenial colleagues, a great neighborhood – a safe place for my children even if I was not with them and walk-to schools.  When my children grew up – and left home for college and marriage and  . . . I found time to revive my childhood interest (begun as a child reading Robert Louis Stevenson’s A Child’s Garden of Verses) to poetry.

One of my favorite poems celebrates the mathematician, Amalie Emmy Noether;  it’s title is “My Dance is Mathematics”

One of the requirements for mathematics professors at Bloomsburg University was to teach “general education” courses for non-majors and this experience led me to write and publish a textbook entitled Mathematics in Daily Life – a book containing material that engaged students in mathematical reasoning related to counting, voting, travel, decision-making, and other frequent concerns.  Work on this project and — even more so — my interest in poetry drew me into connections with other colleagues (in English and Philosophy and . . . and I gradually began to participate in poetry events and publication in addition to my math-related activities.

Writing poetry was an activity that I much enjoyed – and many of my poems incorporate mathematical ideas.  One of my favorite poems celebrates the mathematician, Amalie Emmy Noether;  it’s title is “My Dance is Mathematics” and it is available online at this link:   https://joannegrowney.com/ChapbookMyDance.html ;  here is its opening stanza:

They called you der Noether, as if mathematics

was only for men.  In 1964, nearly thirty years

past your death, at last I saw you in a spotlight,

in a World’s Fair mural, “Men of Modern Mathematics.”

Once my kids were grown – and using some funds inherited from a great aunt – I began to engage in travel-related math-and-poetry activities.  Via “Teachers for Tomorrow” – a non-profit organized by one of my high school friends – I spent part of several summers teaching (math and poetry and English conversation) – in India and in Romania. 

A few years into retirement, I moved south to the Washington, DC area where three of my four children were living with their young families.  And I am still here!

More can be learned about me at my website: https://joannegrowney.com. In 2010 I began to write a blog entitled “Intersections – Poetry with Mathematics” (found at   https://poetrywithmathematics.blogspot.com/) – and, with more than 1600 posts so far, my blogging continues.  My own thought processes seem to follow the rule that “everything connects” – and this article shares some related ideas:  https://joannegrowney.com/Everything-Connects–JMA-Growney-26June2020.pdf

THANK YOU for reading!  I hope you also enjoy math and poetry and their connections!

Image credit: Diann Growney Harrity

Posted by HMS in Stories
Bindi Brook

Bindi Brook

Born in Nairobi, Kenya • Studied Mathematics at the University of Leeds • Highest Degree PhD in Applied Mathematics from the University of Leeds • Lives in the UK • Occupation Professor of Mathematical Medicine and Biology at the University of Nottingham

When I think back to school days, my sense is that I’ve always enjoyed mathematics. But there is one particular memory that is contrary to that. I was around 10 years old and had been finding most of the “maths” we did quite easy. Then some combination of factors (teacher, specific content) brought a sudden loss of confidence. I could not get my head around what we were being taught and I thought that was it – that I did not like maths anymore. My dad decided I was being silly (thankfully) and worked through some examples with me, every night, for about a week. By the end of it, my temporary lack of confidence had gone and ever since then I have really enjoyed some form of maths (here one can read – NOT pure maths). In fact, whenever I couldn’t make a decision about what I wanted to do next (at the end of A-levels, at the end of my undergraduate degree) I just picked the thing I enjoyed the most (maths and then applied maths) and went with it. I come from a South Asian culture where, if you’re considered “able”, you’re expected to study Medicine. That wasn’t for me – I really did not like remembering lots of facts and much preferred the problem-solving needed for studying maths.

(…) I have started to look into the mechanisms that could lead to a rare lung disease called lymphangioleiomyomatosis (LAM) and Long Covid.

In an interesting twist though, in my research career, I have essentially specialised in applying mathematics to biological and medical problems! My PhD was all about understanding what happens to blood flow in collapsible blood vessels like the giraffe jugular vein. In my postdoc I was investigating how to optimise ventilator settings for patients in ICU and then how to deliver inhaled therapies into the lungs. Since then, my focus has been in trying to understand how diseases like Asthma and other respiratory diseases originate and then progress. This involves incorporating biology and physics into mathematical and computational models, using approaches from different areas of applied maths. More recently I have started to look into the mechanisms that could lead to a rare lung disease called lymphangioleiomyomatosis (LAM) and Long Covid.

Although I am now a Professor and have spent much of my working life in academia, I took a somewhat torturous path getting there and could have picked a different route a number of times. Immediately after my PhD I worked for a credit card company, applying statistical models in a somewhat robotic fashion. There was no problem-solving involved and within 3 months I knew I could not stay and 3 months later started a postdoc in Sheffield. Towards the end of my postdoc I had my first daughter and worked part-time to complete it after which I decided I would just take time out to look after her. Two years later I had my second daughter.

Throughout my career, I have had some fantastic mentors (both women and men) who guided me through some tough times. These included workplace bullying and discrimination (as a woman of colour) and I have had to work hard to overcome these hurdles.

When my second daughter was around 2 years old I was starting to consider alternative careers to academia (I felt I had been out of it too long, hadn’t written up my postdoc work into peer-reviewed papers, etc) when I got a phone call from a previous academic colleague from the University of Nottingham asking if I would be interested in covering his teaching part-time, as he was taking a sabbatical. I took up this offer and continued to teach and work part-time until I felt my daughters were old enough for me to consider getting back into research. I applied for and was awarded a fantastic “return-to-research” Daphne Jackson Fellowship which allowed me to restart my research on a part-time basis and also write up some of my postdoc work. I will be eternally grateful for this opportunity, as it allowed me to start my research in asthma, build up a network of collaborators and eventually my first MRC grant. The other most important thing that made all this possible is my amazing, hugely supportive, parents who helped look after my daughters for many years.

Throughout my career, I have had some fantastic mentors (both women and men) who guided me through some tough times. These included workplace bullying and discrimination (as a woman of colour) and I have had to work hard to overcome these hurdles. Unfortunately, these things still exist. More recently (in my case) these have been more in the form of unconscious bias rather than overt. And significant efforts are being made to address these issues in my School. I try to contribute the best I can with these efforts. Nonetheless, it does mean that I regularly have to sit back and ask if it’s worth it. The answer isn’t an easy “yes”, not just for the above reasons but also because of the way higher education is going these days in terms of massive budget cuts and increased bureaucracy. On the positive side, I work with wonderful friends and colleagues, on worthwhile research problems, and great students.

Posted by HMS in Stories
Anna Ma

Anna Ma

Born in the US • Studied Mathematics at the University of California, Los Angeles • Highest Degree PhD in Computational Science from the Claremont Graduate University • Lives in the US • Occupation Assistant Professor of Mathematics at the University of California, Irvine

When I was a kid, there were lots of things I wanted to be: a lawyer, a teacher, a singer, and even, at one point, a maid (I loved organizing and cleaning as a kid, too!) The thought of being a professor, let alone a professor of mathematics, never crossed my mind. I enjoyed mathematics as a kid but wasn’t the “math wiz” in school. I simply enjoyed it. In other classes, I had to memorize all these seemingly random facts, dates, and names of cell parts and their functions. In math classes, all I needed to do was understand the underlying concept, and I would be able to solve many problems!

My first memory of just the thought of being a mathematics professor came in high school. I joined a class geared towards first-generation college students and presented a project on my dream career as a high school math teacher.

Around middle school, I decided to pursue mathematics as a career. My parents immigrated to the US as refugees during the Vietnam War and worked as nail technicians and factory workers so the only people I knew who “did math” were the math teachers I interacted with at school. Thus, I set my sights on becoming a high school math teacher. My first memory of just the thought of being a mathematics professor came in high school. I joined a class geared towards first-generation college students and presented a project on my dream career as a high school math teacher. One of my classmates turned to me after my presentation and said, “I think you’re aiming too low; I think you should be a math professor.” I told her there was no way I could ever accomplish that, and I left it at that. 

While trying to figure out what other careers existed for mathematicians, I stumbled upon Applied Mathematics and research: the wonderful world of creating new and exciting mathematics for real-world applications. [..] From there, I was hooked. 

In college, I began taking math classes beyond calculus: logic, analysis, algebra, combinatorics, and numerical analysis. Logic and Numerical Analysis were two of my favorite courses, and it occurred to me that if I were a high school math teacher, I’d never have the opportunity to “do numerical analysis” again. (Was I being a little dramatic? Yes. But did I know what I wanted? Also, yes!) While trying to figure out what other careers existed for mathematicians, I stumbled upon Applied Mathematics and research: the wonderful world of creating new and exciting mathematics for real-world applications. My first research project was to help develop an algorithm for the Los Angeles Police Department to clean reporting data automatically. Next, I worked on a project analyzing Twitter (now called X) data to categorize Tweets automatically into content-based topics that did not rely on keyword searches. From there, I was hooked. 

In college and grade school, it was difficult to see how intertwined mathematics was with the world around us. Through these projects, I began to see mathematics and the world through a new lens.  The realization that mathematical concepts and theory could directly impact and improve real-world problems is inspiring, and this shift in perspective not only enhanced my appreciation for mathematics but also fueled my passion for pursuing further research and applications that bridge theory with practice. 

In academia, you raise the next generation of mathematicians, discover and create new mathematics, and serve the scientific community and beyond.

Working in academia is an incredibly unique opportunity. In academia, you raise the next generation of mathematicians, discover and create new mathematics, and serve the scientific community and beyond. At the same time, academia can be really difficult because everyone has opinions about what you should and shouldn’t be doing and how you should and shouldn’t be spending your time. Early on, I decided I would do what made me happy. If that wasn’t enough for academia, then I wouldn’t be happy doing it anyway. There really is no other job like it in the world. Currently, I am working with multiple graduate students, recruiting new students for an undergraduate research project, writing proposals, and writing manuscripts to introduce new and improved algorithms and theorems to the mathematics community. One of the most surprising things I’ve discovered about this career is how much traveling I get to do. Every year, there is typically at least one international trip (Paris, France last year for the SIAM Applied Linear Algebra conference!) and a few domestic trips for conferences, visiting collaborators, and presenting research at other universities and research institutions. My day-to-day life in my career is never the same, which makes the work and life very exciting. 

Posted by HMS in Stories
Uzu Lim

Uzu Lim

Born in Seoul, South Korea • Birth year 1993 Studied Mathematics at Postech in South Korea • Highest Degree PhD in Mathematics from University of Oxford, UK • Lives in Oxford, UK • Currently a postdoctoral researcher in mathematics at the University of Oxford; soon to start a postdoctoral researcher position in Queen Mary University of London

I am a mathematician working on geometric data analysis, and I am a transgender woman. The interaction of mathematics and gender in my life is non-trivial, and I thought seriously about this for the first time while writing this piece. While my gender identity slowly crystallised over my life, it was only 4 years ago that I declared myself as transgender. Mathematics has been at the centre of my life for a long time, and I mostly regarded it as a genderless activity. However, I’ve recently started recognising the effects of male socialisation in my mathematical practice, and started exploring how my femininity could interact with my mathematical practice.

In the end I got a PhD in mathematics in Oxford, but the voices whispering “I am not enough” never stopped.

I grew up in a fairly typical “Asian male math nerd” culture, although it was one of those turbo-charged versions appearing in science high schools and Olympiads. Born in South Korea, I went to an international boarding school when I was 13, and moved alone to Singapore when I was 15 to attend a prestigious science high school. That was not enough for me, because I constantly complained that this school wasn’t teaching me enough advanced mathematics. In the end I got a PhD in mathematics in Oxford, but the voices whispering “I am not enough” never stopped. I attribute this to the nerd-machismo in male STEM culture, coupled with the distinct Asian workaholism. I could not settle for anything that may actually give comfort and nurture, for once.

With the help of my transgender boyfriend, I reflect that it’s time to stop and look back. I have done enough to show that I am worthy of love. It doesn’t have to be a constant screaming and scaling a higher mountain. I look back at my love of shapes and structures, and I look back at the delicate theorems and programs I sculpted over the course of my mathematical life. I say: I love all of you, and I will care for all of you, because you are a dear part of me. And I do this with a form of feminine, motherly love.

(…) I sense a harsh masculinity in how many scholars think of mathematics.

The heart and soul of mathematics lie in the expanse of the fluid framework of ideas created by people. Important theories are supported by soft intuitions, and the network of deep thinkers brings gradual yet certain progress to mathematics. I sense much femininity in this smoothness of ideas. On the contrary, I sense a harsh masculinity in how many scholars think of mathematics. While learning pure mathematics, there was a persistent self-loathing along the lines of: “You will never dream of staying in academia if you can’t even finish Hartshorne’s Algebraic Geometry.” There’s always a higher tower to climb, and a grander theorem to learn. It reminds me of phallic architectures that trace the city skylines. Mathematics is also often made into a sterilised toolbox that is wiped clean of blood and sweat in the creative process. I performed this sterilisation in writing my doctoral thesis, where the anxiety and obsession in my contrarian approach to geometric data analysis were sanitised before I presented them cleanly in theorems and algorithms. This is good in some sense, but there is a lingering unexplored emotional dimension that could have been shared more deeply with other mathematicians.

So here onwards, I dream of cultivating a more feminine mathematical culture. Partly, that means to be honest with all sorts of emotions that arise from mathematical practice. Even though I see mathematics itself as a genderless activity, the gendered culture brought by mathematicians is real. I dream that mathematicians will someday open up more of our human, emotional elements into research papers and talks. To play my part, I will start to look deeply into my colleagues’ mathematical practices to share our woes, obsessions, hopes and dreams. As I rise higher in the rank, I will have more chances to usher in the strength in emotional openness in supervision, papers, and seminars. Someday we will be climbing the celestial mountains of abstraction as a team, not in the misguided spirit of nerd machismo, but rather in the spirit of nurturing yet powerful femininity.

Posted by HMS in Stories
Mónica D. Morales-Hernández

Mónica D. Morales-Hernández

Born in Nuevo Leon, Mexico • Birth year 1989 Studied Applied Mathematics at UAA in Mexico • Highest Degree Master of Science in Mathematical Sciences from Clemson University, USA • Lives in New York, USA • Occupation Assistant Teaching Professor

I am an applied mathematician and educator now, but that wasn’t my initial goal. I originally aspired to be a physicist. Since my university didn’t have a physics major, I decided to pursue mathematics instead.

The field [of computational mathematics] is dominated by white male mathematicians, which means female faculty and underrepresented groups often face sexism and discrimination.

While pursuing my undergraduate and graduate studies in Mexico, I had the chance to do research using numerical methods to model bacterial growth. During my time at Clemson University, working on my Master’s degree in Computational Mathematics, I had the chance to dive into some fascinating projects. One of the highlights was working with something called the Leray alpha model, which is a regularization of the Navier-Stokes equations that has shown effectiveness in numerical simulations of turbulent and complex flows. Working on this project holds a special meaning for me. It was not only the first research project I worked on in the United States, but it also involved a type of mathematics (Finite Element Method) that I had not had access to in Mexico, and it was a physics problem, which fulfilled my dream of becoming a physicist.

Computational mathematics is not easily accessible to everyone. The field is dominated by white male mathematicians, which means female faculty and underrepresented groups often face sexism and discrimination. Additionally, it is an expensive field, with the cost of software, books, and conferences creating barriers for people trying to access this knowledge.

(…) My students have used their knowledge to model the oil spill in the Gulf of Mexico, analyze income inequality in New York City using the Gini coefficient, and determine appropriate drug dosages (…).

Due to these challenges, I have been advocating for greater access to information and knowledge. As an educator, I truly believe that mathematics is a skill that can be developed if you practice and are given the correct resources. This belief has guided my approach to teaching, where I’ve made a conscious effort to integrate practical applications and research components into traditional coursework. In courses like Calculus 2 and Linear Algebra, I have incorporated a research component where students tackle real-life problems, with a special emphasis on social justice issues. This innovative approach allows students to apply mathematical techniques learned in class and numerical methods to address significant societal challenges.

For instance, my students have used their knowledge to model the oil spill in the Gulf of Mexico, analyze income inequality in New York City using the Gini coefficient, and determine appropriate drug dosages, among other projects. These projects not only deepen their understanding of mathematical concepts but also highlight how mathematics can be a powerful tool for analyzing and solving real-world problems. By exploring the intersection of social justice and mathematics, students gain a broader perspective on how their skills can contribute to meaningful change in society.

The [EvenQuads card] decks pay tribute to notable women mathematicians and can be used to play various mathematical games.

As a woman of color, sexism and racism have been a challenging part of my academic journey. These experiences have motivated me to work towards making the math world a better place for women and other minorities. My passion for this cause led me to volunteer at the Association for Women in Mathematics, where I strive to create a more inclusive environment for underrepresented groups. I am a member of the EvenQuads Committee and currently serve as the Chair of the Student Chapters Committee. The EvenQuads card decks is a project created to celebrate the 50th anniversary of the Association for Women in Mathematics. The decks pay tribute to notable women mathematicians and can be used to play various mathematical games. These cards acknowledge the significant, yet frequently overlooked, contributions of women to mathematics in research, education, and industry.

Through these combined efforts in my research, teaching and advocacy, my goal is to ensure that the field of mathematics is accessible and welcoming to everyone, regardless of their background.

Posted by HMS in Stories
Edith Opoku Acheampong

Edith Opoku Acheampong

Born the central region of Ghana • Studies Bachelor of Science in Administration with a major in Administration accounting • Lives in Greater Accra region of Ghana • Occupation Student and AIMS Girls in Mathematical Sciences program alumnus

This is how my mathematics journey began. Back in elementary school, I did not  like mathematics. It was a subject I never wanted to learn or have anything to do with. It even got worse in the Junior High School level. My mathematics teacher used to be so boring and this made the subject not so interesting to learn. I graduated with a grade 3 in my final examination at the Junior High School level, Nevertheless, I was good at the rest of the subjects especially science.

Back in elementary school, I did not  like mathematics. It was a subject I never wanted to learn or have anything to do with.

I started enjoying mathematics in the senior High School. This took place when I started to practice mathematics every day. During my senior High School days, I studied general arts having my electives as elective mathematics, economics, government and geography.  Knowing very well my weakness in mathematics from Junior High school, I still chose mathematics as an elective course. Choosing this made me decide to take mathematics seriously. I started to study it. 

Choosing [mathematics] made me decide to take mathematics seriously. I started to study it.

After our mid-semester exams for the first semester in our first year, I had good marks in elective mathematics. I had 34 out of 40. I was so happy. Our madam made the class clapp for me and that really motivated me. It made me realize that I have the potential to become an excellent student of mathematics.

Since then, I have been very good at mathematics and even teach others. I have had scholarships due to mathematics. Mathematics is indeed taking me far. I got admission into the university because I had a good grade in mathematics and I’m offering a mathematics related course.

I therefore encourage young girls that mathematics is not a course which is not beyond their reach. They can do it!

Posted by HMS in Stories
Liliana Esquivel

Liliana Esquivel

Born in Toledo, Norte de Santander, Colombia • Birth year 1991 Studied Mathematics at the University of Pamplona in Colombia • Highest Degree PhD in Mathematics • Lives in Cali, Colombia • Occupation non-tenure track Associate Professor at the University of Valle, Colombia

I never really thought I would become a mathematician. Although I enjoyed solving maths problems in my early years of high school, my first love was dance. I wanted to become a dancer. I finished high school when I was 14 years old. At that moment, while deciding what to study in college, a scholarship opportunity for Mathematics came up, and I thought, ‘Why not?’. That ‘why not’ has turned into a career of almost 18 years.

My passion for mathematics truly awakened with mathematical analysis. For me, the concept of approximation is one of the most refined in mathematics. Currently, I am continuing on the path that my undergraduate and graduate advisors helped shape for me. Staying on this professional path is thanks to them and the spark they ignited in me, which makes me want to keep learning every day, as learning is one of the things I enjoy the most.

Although I may have never told her, [my PhD advisor] has always been my role model in this field. My aspiration is to be a source of inspiration and guidance for my students, just as she was for me.

This career has given me the chance to visit unimaginable places, immerse myself in diverse cultures, and have unforgettable experiences. I’ve pushed myself beyond my comfort zone, tackling challenges I once believed were insurmountable, and somehow, I have succeeded each time. Along this journey, I have met incredible, inspiring, and talented individuals who have contributed to my growth both professionally and personally. Resilience and tenacity are two qualities that develop over time in this job.

I was fortunate to have an exceptional PhD advisor—an intelligent, inspiring, strong, and determined woman. Although I may have never told her, she has always been my role model in this field. My aspiration is to be a source of inspiration and guidance for my students, just as she was for me.

Being a mom has put me in the same boat as many others, trying to stay on top of my maths game while being fully present for my kids.

In recent years, my academic perspective has evolved. I wish to remain active in research, but more than teaching, I want to share my passion. My passion is mathematics—its structure, its theorems, and ultimately, its beauty. I believe that by sharing this passion, I can inspire others to appreciate the elegance and depth of mathematics. I aim to create an engaging and stimulating learning environment where students can explore, question, and develop a profound understanding of mathematical concepts. My goal is to ignite their curiosity and foster a lifelong love for the subject, just as my mentors did for me.

One of the most challenging aspects throughout these years has been balancing my professional and personal life. Being a mom has put me in the same boat as many others, trying to stay on top of my maths game while being fully present for my kids. However, being a mother to a child with special needs has illuminated for me the profound societal needs. Specifically, it’s shown me how we need a kinder, more inclusive academic world, one that’s less about labels and more about understanding and support.

Posted by HMS in Stories
Jyoti U. Devkota

Jyoti U. Devkota

Born in Nepal Studied Mathematical Statistics at Lady Shri Ram College, New Delhi, India • Highest Degree PhD in Mathematical Statistics at the University of Osnabrück, Germany • Lives in Kathmandu, Nepal • Occupation Professor of Statistics and Mathematics

I had a great interest in mathematics right from my childhood. The beauty of mathematical problems and its solutions always captivated me. The logical approach followed towards solving a mathematical problem, the exactness and preciseness of its solutions, was always a source of great fascination. As a school student, I was always in the quest of a solution to the mathematical problems given by my mathematics teacher, in the classroom. During my student life in school and college, I was always ready to tackle that mathematical problem for a solution. 

While growing up, my mathematics teachers in my school and my college were my role models. But I didn’t always have a good mathematics teacher in the school. Some teachers, although quite knowledgeable, could not explain mathematics in a simple language. In the pre-Internet and Communication Technology (ICT) era, those were the times of great struggle, as a student. Access to good quality study materials in mathematics was limited to teachers, in those times. Despite having very limited good quality educational resources in mathematics, I have tried to persevere as a student, professional and a researcher. Mathematics has always been a labor of love for me.

Despite having very limited good quality educational resources in mathematics, I have tried to persevere as a student, professional and a researcher. Mathematics has always been a labor of love for me.

After studying Mathematical Statistics in India and completing my PhD in Germany, I returned to Nepal, where I have worked now in the Department of Mathematics at Kathmandu University for more than 25 years.  In this university, I have delivered lectures on several courses of Statistics and Mathematics at the undergraduate, graduate and postgraduate levels. My main objective has been to popularize these courses among my students. To achieve this, I have always tried to simplify formulas and make them engaging for the students. I have also offered crash courses in advanced levels of Statistics and Data Analysis to interested students and researchers. I have also focused on the interdisciplinary applications of the subject. I have taught students from many disciplines including medicine, engineering, environmental sciences and social sciences. My main aim has always been to promote data-based interdisciplinary studies. This was done by making mathematics interesting and popular among my students.

My main aim has always been to promote data-based interdisciplinary studies. This was done by making mathematics interesting and popular among my students.

I faced some challenges while starting my career as a professional like all my male counterparts. This was due to the switch over from student life to the life of a professional. I experienced at that time that the atmosphere in the classroom as a student was completely different from the atmosphere in the university as a lecturer. In due course of time, I married and had two children. In the initial years of my marriage and motherhood, balancing my married life and my motherhood with my professional life was the source of a great challenge. At that time, due to a Gender Gap in the professional fields of Nepal, I had to figure out how to balance my life. There were no female peers in this field, who could guide me through this part of my life journey. At that time, female professionals were much less in number than male counterparts. My family supported me during this time. I left my daughter with my parents, during my PhD study. 

In the initial years of my marriage and motherhood, balancing my married life and my motherhood with my professional life was the source of a great challenge. [..] There were no female peers in this field, who could guide me through this part of my life journey.

I have to state that there is a Gender Gap in STEM education. STEM subjects seem to be less popular among girls. I feel that girls can break the glass ceiling through their hard work and perseverance in Mathematics and its allied subjects. A sound training in mathematics and its allied subjects prepares them to look at a problem from a different perspective. Girls with enhanced skills in mathematical problem solving are more evidence based and thorough. Mathematics is said to be the language of nature. Thus, these skills have immense scope of interdisciplinary applications. 

With Internet and communication technology, girls of Nepal can be as good as their counterparts in the developed country. By using this technology, girls of Nepal can enhance their skills of problem solving, using mathematics. They should be encouraged to participate in Mathematical events, as this will expose them to the importance of mathematics and the role of ICT in enhancing their skills in mathematics.

Posted by HMS in Stories
Dorcas Seshie Afi Mawutor

Dorcas Seshie Afi Mawutor

Born in Accra, Ghana • Birth year 2004 Studies physics with computer science at the University of Ghana • Lives in Accra, Ghana • Occupation Level 300 student, financial secretary of department, Huawei campus ambassador for the University of Ghana Huawei ICT Academy

I have always admired Marie Curie, not just for her pioneering work in science but for her fearless approach to understanding the world. Her words “Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.” resonate deeply with me. I look at her pictures and see a fearless woman, reminding me of my journey and the questions I have asked myself and continue to ask: “Can I do this? Am I in the right field?”

My answers date back to my primary school days when my love for mathematics ignited my passion for physics. Even as a child, I was always very curious, constantly asking the WHYS, HOWS, and WHATS. My incessant questions often tired my teachers. I always found simpler and alternative ways to solve my math problems in class, feeling a deep sense of satisfaction when I arrived at the same answers as everyone else, but through a different approach. I’m not gonna lie, it made me feel like a genius.

Physics, as they say, is math in motion.

My journey into the world of physics began with a mixture of uncertainty, optimism, and determination. The uncertainty in my journey into physics arose from many questions about my future profession. In Ghana, physics graduates often become teachers or lecturers, a cycle I clearly want to break. This uncertainty fueled my optimism and determination, pushing me to explore diverse opportunities within the field. Moreover, the complexity and depth of physics as a subject can be intimidating. In senior high school, I found myself facing challenging material that often left me questioning my capabilities.

Physics, as they say, is math in motion. It is one abstract field. Its abstract concepts, such as quantum phenomena, special relativity, classical mechanics, cosmology, and mechanics, captivated and piqued my interest. I was also attracted to how difficult it seemed to grasp these concepts back in senior high school, which made me so competitive. It was either me conquering the physics subject or it totally conquering me.

Participating in The Girls in Mathematical Sciences program was transformative.

I remember being the first female in my school to contest in the national science and math quiz. My specialties as a candidate were my very brilliant skills and knowledge in physics and math. I was basically their human calculator as well as their math expert. I was glad when I chanced upon The Girls in Mathematical Sciences program organized by the African Institute for Mathematical Sciences. At first, I was skeptical about applying because I thought it was a program only for those interested in pursuing careers in mathematics, but my math teacher encouraged me to apply. I did, and voila, I got in. I am glad to have been part of the first cohort. Participating in The Girls in Mathematical Sciences program was transformative. I met exceptional young ladies whose enthusiasm encouraged me to study harder. Their confidence made me brave, and I deepened my passion for physics while learning about diverse career paths. Dr. Angela Tabiri inspired me as well.

I then realized that the program wasn’t geared only towards girls who wanted to pursue math; I met and appreciated the love of my life, PHYSICS. Funny, right? The world has its ways of doing things. I was enlightened on the various paths and careers that math and physics could lead to. At that point, I was wowed. I knew from then that pursuing a degree in physics wouldn’t be a bad idea either. Who knows? I might just be the next female Einstein.

Currently, I have a strong interest in quantum physics as well as machine learning, but I’m still exploring more options and hoping to intertwine physics with computer science.

I discovered various career paths through the program, including quantum physics, aerospace engineering, and data analysis. Currently, I have a strong interest in quantum physics as well as machine learning, but I’m still exploring more options and hoping to intertwine physics with computer science. Before my passion for physics, initially, my aspirations were firmly set on becoming a medical doctor, a path that seemed more defined and familiar (which is every science student’s dream).

My journey hasn’t been without challenges. Being a female in a predominantly male field can be daunting, especially since there aren’t many females pursuing physics. In my class, males make up about 85%. This disparity has been challenging, but it has also motivated me. In the future, I hope to contribute to the field of physics through research and innovation. I want to inspire other young girls, especially those from Africa, to pursue their passions in STEM fields. Curiosity has been my driving force, and I intend to keep it that way.

So here I am, Dorcas Seshie Afi Mawutor, a young woman from Accra with big dreams and a relentless spirit. My story is just beginning, and I am excited to see where this path will lead. Whether it’s unraveling the mysteries of the universe or inspiring the next generation of female scientists, I am ready for the journey ahead.

Posted by HMS in Stories
Jenna Race

Jenna Race

Born in Würzburg, Germany • Birth year 1986 Studied Mathematics at Century College in White Bear Lake, Minnesota, USA • Highest Degree Associates of Science in Business Administration • Lives in White Bear Lake, Minnesota, USA • Occupation Associate Communications Specialist at Metro Transit

From an early age I easily understood patterns that baffled my peers. Because of this I gravitated toward Math. In my early years in school, I was a great student with top marks in all my classes. Things changed in tenth grade when I developed bipolar symptoms. My GPA (US grading scale in high school) plummeted. I eventually failed nine classes including statistics and pre-calculus. After that, Math did not seem like the field for me anymore. Still, my heart’s desire was to pursue math, and I have never given up on that dream.

This class changed everything. It was the spark that re-lit the fire. It brought back the childlike wonder and awe I had for the beauty of mathematics.

I started college shortly after high school. My mental health symptoms continued to get in the way and I did not do well. After years of hard work and dialectical behavioral therapy I learned to manage my symptoms and regain control of my life. I decided to resume higher learning with a new-found confidence. I started at Century College in January 2019 as a first-generation, non-traditional student. However, I did not allow those facts to interfere with my progress. Finally, I was the student I always knew I could be. I dove deep into my classes and actually excelled! I decided to study business, having accumulated ten years of corporate work experience in customer service and answering business correspondence. My first two semesters were filled with general classes, but College Algebra came in fall 2019. This class changed everything. It was the spark that re-lit the fire. It brought back the childlike wonder and awe I had for the beauty of mathematics. I poured my heart and soul into that course and maintained a 99% for most of the semester.

With all my momentum and excitement, surely I would succeed again… until I didn’t.

I have heard many people say that math is so stressful to them that it makes them cry. In contrast, I have wept with wonder when recounting how the universe makes sense when math proofs are worked out. Math is the only subject I see myself pursuing for the rest of my life. This led me to update my college major to Mathematics. I made this change in April 2020: the start of the COVID-19 pandemic.

In spite of the pandemic, I continued to excel in classes. I eventually earned my first degree in May 2021, an Associates of Science in Business Administration. It was in fall of 2021 when I was done with business that I took the class that I always dreamed of: Calculus I. I was especially excited to take that class with my College Algebra professor. With all my momentum and excitement, surely I would succeed again… until I didn’t. I studied for hours and devoted myself to class but was not as successful as I hoped. By the end of the term, I earned a grade of 70%. Although I was eligible to take Calculus II the next semester, I took my instructor’s advice and retook the class. I am glad I took his advice because I did much better the second time and was more prepared for Calculus II. I took Calculus II in fall of 2022. With lots of preparation I excelled in the course.

For a time, I considered quitting, but I never let my struggles win.

Knowing how alone I felt as a female, minority, non-traditional, first-generation college student navigating mathematics during the pandemic, I wanted to give back to other students in similar situations. I was able to do that by becoming an organizer for OURFA2M2, the Online Undergraduate Resource Fair for the Advancement and Alliance of Marginalized Mathematicians. This is one of my proudest achievements since starting my math journey.

I wish that I could say that it was all downhill from there, but it was not. My last 3 semesters have been the most challenging of my math journey. That’s when I took Calculus 3 and Differential Equations. At the same time, I changed jobs and experienced significant changes in my personal life. For a time, I considered quitting, but I never let my struggles win. After 5 years, I am about to graduate from Century College and continue my mathematical journey at a four-year university. I know I will struggle in the future, but my experience so far has shown that I am tenacious and can tackle any challenges that come my way.


Elements of the first three paragraphs of this text are based on a book chapter by Jenna Race in “Read and Rectify: Advocacy Stories from Students of Color in Mathematics”, edited by Pamela E. Harris, Ph.D., and Aris Winger, Ph.D., whose permission has been obtained before publication.

Posted by HMS in Stories
Marta Pittavino

Marta Pittavino

Born in Cuneo, Italy • Birth year 1987 Studied Mathematics at the University of Turin, Italy • Highest Degree PhD in Biostatistics from the University of Zurich, Switzerland • Lives in Venice, Italy • Occupation Assistant Professor with Tenure-Track in Statistics at the University Ca’ Foscari Venice

I have always been passionate about exploring the world of numbers and graphs, finding their intricate patterns and relationships fascinating.

Thanks to my scientific high school education at “Liceo Scientifico Giuseppe Peano”, I was exposed to all the historical and classical branches of mathematics, including Algebra, Geometry, Analysis, and more, with a high degree of knowledge and depth. I was taught important methods for solving equations and performed well in these subjects.

Mathematics was like a game to me: MatheMagics, a sort of puzzle where connecting different pieces represented solving equations, revealing the solutions behind them and the underlying functions.

My Master’s thesis involved developing an epidemiological model to represent a disease in goats.

I pursued Mathematics for both my Bachelor’s and Master’s degrees. My Master’s thesis involved developing an epidemiological model to represent a disease in goats. It was particularly brilliant, receiving two academic recognitions: the Best Master Thesis in Mathematics of the current Academic Year and the Caligara Prize, awarded to Interdisciplinary Master Works with an applied focus. These two awards gave me the ‘wings’ to fly toward the beginning of my academic path.

Therefore, I moved to Switzerland to pursue a Ph.D. in Applied Statistics at the University of Zurich, focusing on the study of Additive Bayesian Networks (ABN) for System Epidemiology. ABN is an innovative methodology that deals with multivariate data, analysing the interconnected and hidden relationships between variables. This marked my first step in transitioning from applied mathematics to statistics.

Mathematics and Statistics are two sides of the same coin, each indispensable and valuable.

Mathematics and Statistics are two sides of the same coin, each indispensable and valuable. On one side, there is the rigour and elegance of formulas, accompanied by foundational knowledge and methodology. On the other side, there is evolution through the modernity of digitalization and concrete applications. Statistics, particularly when applied, is a subject primarily developed using statistical software for data analysis. Additionally, data visualisation is a crucial initial step in comprehending the context. When conducted directly with a tool, it is the outcome of digitalization.

I have always compared my PhD journey to a hike. The peak of the mountain represents the completion of the thesis, or equivalently, the submission and even better, the publication of a scientific paper. I often had the impression that reaching the highest point of the mountain was not possible. This feeling was often demotivating. Overcoming this required strength, determination, and a bit of ambition to finish the task and not give up on the goal. However, the immense satisfaction of completing the PhD ultimately rewarded all the previous effort.

I continued this journey with a PostDoc in Applied Statistics for Nutritional Epidemiology at the International Agency for Research on Cancer (IARC), a part of the World Health Organization (WHO) in Lyon, France. The project focused on studying the relationship between two types of cancer and B-Vitamins intake, involving the development of a Bayesian hierarchical model that accounts for the complexity of the data, including measurement error, disease models, and their intake distribution.

As I began sharing my knowledge, passion, and experiences with them, the joy and gratitude reached their zenith when I observed the students understanding new topics and expressing profound appreciation.

Postdoctoral positions are particularly delicate as they involve a transitional phase in one’s career. At the conclusion of the contract, there may not be a conferred title or a guaranteed position. Therefore, the qualities of strength, determination, and ambition mentioned earlier become even more critical. These attributes are essential for persisting with the research project and not succumbing to challenges, thereby maintaining the original objectives.

After spending a couple of years in France amidst the challenges of academic life, I returned to Switzerland and took on the role of a Scientific Collaborator. This position swiftly evolved into a Senior Lecturer role. Over the course of 6 years, I was affiliated with the University of Geneva, where I taught various courses in Statistics and Mathematics at both the Bachelor and Master levels, delivering lectures in both English and French. Additionally, I served as the Scientific Coordinator of the Master program in Business Analytics. 

The first time I embarked on teaching, I felt utterly lost during the preparation phase, a mix of thrill, excitement, and emotion engulfing me afterward. The moment before entering the classroom consistently brought a sense of forgetting my own knowledge, a feeling that dissipated upon seeing the students in front of me. As I began sharing my knowledge, passion, and experiences with them, the joy and gratitude reached their zenith when I observed the students understanding new topics and expressing profound appreciation. These moments stand out as the happiest and most rewarding aspects of my day, constituting a meaningful part of my teaching career.

In this current position, my focus has been on investigating statistical techniques and analyses for demographic studies, particularly on the ageing of the European and Italian population.

During the period in Geneva, my research interests transitioned from biostatistics to philanthropy, exploring specific statistical methodologies highly relevant to that discipline. My shift in research interests expanded further during my role as an Assistant Professor at the University of Florence, a position I held for 10 months just before transitioning to my current role as Assistant Professor with Tenure-Track at the University Ca’ Foscari Venice. In this current position, my focus has been on investigating statistical techniques and analyses for demographic studies, particularly on the ageing of the European and Italian population.

From epidemiology to philanthropy and demography, these are just a few examples of the myriad applications of mathematical and statistical methods. As Galileo Galilei once aptly stated, ‘The Book of Nature is written in the language of Mathematics‘. This encapsulates the secret and magic of this wonderful discipline.

Posted by HMS in Stories