Academia

Fulya Kula

Fulya Kula

Born in Turkey • Studied Mathematics at Middle East Technical University in Ankara, TurkeyHighest degree PhD in Mathematics Didactics • Lives in Enschede, The NetherlandsOccupation Lecturer at the University of Twente

I actually did not really like mathematics in primary school. I found it difficult to memorize all multiplication tables for example, as I did not really understand the concept behind them. However, during high school, I had a great teacher, who could explain really well. She introduced us to theorems and proofs, and I found this challenging and rewarding.

What prior knowledge is necessary to fully understand the concept of the derivative? And what happens when some of that knowledge is missing?

After that, I did my BSc in mathematics, but I was also very intrigued by the way my professors were teaching, maybe because of my experience in primary school. All were very talented mathematicians, but some of them were not explaining very well, while others were. This motivated me to do my undergraduate and PhD level in the didactics of mathematics. In my PhD for example, I focused on the concept of the derivative. What prior knowledge is necessary to fully understand the concept of the derivative? And what happens when some of that knowledge is missing?

I am now still working in the field of mathematics and statistics didactics. I investigate how we can improve the teaching and learning of mathematical and statistical concepts. This combines my pedagogical skills and scholarly knowledge. I try to gain a better understanding into how people learn, and how this knowledge can improve teaching.

I find this project particularly exciting because it can make a real difference in students’ academic lives, as I often see them struggling in the first year during my teaching.

I am currently working to make the transition from high school math to college-level math easier for students. This means that students should have a better understanding of several mathematical concepts and skills when they are at university. To achieve this, I investigate best practices in curriculum development. I will also create videos and practice material on topics that many students are struggling with. I find this project particularly exciting because it can make a real difference in students’ academic lives, as I often see them struggling in the first year during my teaching.

During my research, I focus on how we can teach mathematics in such a way that students can understand it more easily. I had very interesting results on teaching statistical inference for example. In statistics, you often make probabilistic statements about an entire population while you only investigate at a small sample of it. This concept is often very difficult to grasp for students. Usually, during a course students are first told about the sample (for example the sample mean), and are then told what this sample statistic tells about the entire population. My research shows that it is actually better to start discussing the population first, and how you create a sample from this entire population. After that, you can teach what this then tells you about the entire population that we started with.

I would really like to investigate the most common statistics textbooks to compare their way of explaining to my proposed model. Doing so will help me to slowly but surely change the way statistics is taught.

My research endorsed that this second way of teaching makes students grasp statistical inference more easily. I would really like to investigate the most common statistics textbooks to compare their way of explaining to my proposed model. Doing so will help me to slowly but surely change the way statistics is taught.

My goal is to make sure that research in the didactics of mathematics is actually applied in mathematical teaching. Despite the fact that there is plenty of research that could be useful, the connection between research and practical teaching is weak. I would love to create a course on didactics for mathematics teachers at universities as well. I feel that most people at the university really like their teaching, and are also interested in my didactical research, but it is difficult and time-consuming for them to get a good overview of the existing knowledge. In such a course, we could go over this together, and discuss how we can implement it in practice. In this way, mathematics education research can really make an impact on the way mathematics is taught.

I really enjoy teaching and find it very motivating. My favorite moments are when a student has an “A-Ha” moment and gains a better understanding of a concept. This is also very rewarding for myself, as I managed to make an impact on the student by teaching them a topic that they did not fully understand. It also shows you the beauty of mathematics: if a student understands all single, small concepts, they can understand a much bigger problem.

Posted by HMS in Stories
Christina Schenk

Christina Schenk

Born in Wittlich, Germany • Birth Year 1986Studied (Applied) Mathematics at Trier University, GermanyHighest degree PhD in MathematicsLives in Madrid, SpainOccupation Postdoctoral Research Associate

Honestly, I do not really know when my passion for science, and in particular math first manifested itself. But from my experience, I can definitely say that being surrounded by the right people and mentors plays a big role in continuing in this direction and not steering towards following one of your other passions.

[..] in all of the career options that I tried, I was missing the logical and structured thinking and the challenges that math brings along.

My favorite subjects in high school had always been math and languages. It was after high school that I was thinking about combining the two subjects but I did not see myself becoming an elementary, middle, or high school teacher which probably would have been a natural choice. I tried several other options realizing internships and applying for study programs but in the end in all of the career options that I tried, I was missing the logical and structured thinking and the challenges that math brings along. It was after a gap year in Australia that I remembered one of my math middle school teachers telling me that I would be the right person to study math. Despite not agreeing with him at that point in time, in the end, I decided to give it a try. I went from a Bachelor’s to a Master’s to a Ph.D. degree in (applied) mathematics.

[..] I am very grateful for my choice as it allows me to not just learn more within my discipline but also about many others.

On the way, I kept learning languages and following my other interests especially learning more about other cultures and getting to know more of the world. After my Ph.D., I decided to go to the US for a postdoc where I stayed for about two years. Then I moved to Bilbao, Spain for another postdoctoral position. After almost two years there, I decided to stay in Spain and move to Madrid. This is what brought me to my current position. Currently, I am a postdoctoral research associate at IMDEA Materials. Here, I mainly develop models and algorithms for the acceleration of materials discovery for finding materials alternatives that are for example more sustainable. This means for instance that they are more inspired from nature, less toxic and do not deplete important limited resources. Having a background in applied mathematics, over the last 10 years I have had the opportunity to apply my mathematical knowledge in many areas reaching from cardiovascular stent design to optimization of fermentation processes to modeling cell metabolism to control of disease transmission dynamics to materials discovery. Looking back at my career decision, I think I would have been happy with studying computer science or engineering as well but it definitely had to be a science subject and I am very grateful for my choice as it allows me to not just learn more within my discipline but also about many others.

An academic research career can bring along a lot of frustration, uncertainty, and not always supportive environments but enjoying the process of learning from every experience, having the opportunity to make the world a better place, and following your passion make it worthwhile.

There have been tough phases and I definitely cannot say that I have never thought about switching careers. But I think that I have always enjoyed the challenges that my career path has brought along, maybe not always at the moment but overall, I believe that from facing challenges you learn the most. An academic research career can bring along a lot of frustration, uncertainty, and not always supportive environments but enjoying the process of learning from every experience, having the opportunity to make the world a better place, and following your passion make it worthwhile. Mentorship programs can give a lot of support on the way to keep you focused on your path and dealing with many of the given challenges. I am definitely very grateful for those mentors along the way that supported me and encouraged me to follow my passions.

If I had the opportunity to talk to my 20-year-old self, I would have told her: “Never regret anything, be grateful for the good things that every decision brought along, follow your passions, hold on to your core values, do not let your fears rule you and most importantly enjoy the process and live in the moment without holding on to the past or having fears about the future. You do not choose your destiny but you choose your company. You will find your way. Do not get lost in too much work, there are also other important things in life and remember success is one thing but you do not want to die one-day having regrets, such as not having shown enough care for your beloved ones and not having followed your other dreams and passions.”

Posted by HMS in Stories
Anna Konstorum

Anna Konstorum

Studied Biology/Bioinformatics at McGill University, Canada, and University of California, Los Angeles, USA, and Mathematics at University of California, Irvine, USA • Highest Degree PhD in Mathematics • Lives in United States • Occupation Research Staff Member at Center for Computing Sciences, Institute for Defense Analyses

I came to applied mathematics slowly, and circuitously – but sometimes that makes for the best stories. When I was young, I fell in love with the complexity of biological processes, and thus I chose to study biology for my BSc. My grandmother was a math teacher and I have fond memories of us playing all sorts of educational math games growing up, which instilled in me a joyful, non-competitive view of math. But I never saw myself as a mathematician, it was just something I enjoyed ‘on the side’.

I sat there in complete astonishment of the beauty and power of math to describe a world that I had realized I had always wanted to see in a mathematical light.

It was only when doing my Master’s, when I took a course focused on using dynamical systems to study the life sciences, that I came to see that mathematics needed to be more than a hobby for me. I sat there in complete astonishment of the beauty and power of math to describe a world that I had realized I had always wanted to see in a mathematical light. And, I felt then, everything clicked. That my love for math and complex systems such as biology were not separate, but actually completely intertwined. It was this realization that led me to do my PhD in mathematics. I performed research modeling interactions of growing tumors with their microenvironment and took classes in a wide range of mathematical subdisciplines. It was very difficult as I knew I had less experience with mathematics than many of my peers, but I also had complementary skills in working on real-world scientific problems, which gave me a unique vantage point to think about the methods I was studying. When I kept my focus on the subject matter, I knew I was where I needed to be. It was one of the hardest, but most rewarding experiences in my life.

I work at the interface of data science and applied mathematics to help address challenging problem sets in national security, and more generally in the computational and data science realms.

Something you come to understand by taking a strong pivot, is that both you and the world have the capacity to honor a new stage in your life and career, especially if you approach the challenge thoughtfully and creatively. I had come to understand that for me, the next stage that I wanted to reach was to expand my applied mathematics capabilities to new domains in addition to the life sciences. And, really, I was ready! Studying the life sciences from a mathematical perspective prepares you to handle a variety of complex data problems. The field is full of extremely noisy data – but data that has, if you chip at it long enough, fascinating patterns and meaning underneath the noise. I now get to do just that as a Research Staff Member at the Center for Computing Sciences, Institute for Defense Analyses (CCS/IDA). I work at the interface of data science and applied mathematics to help address challenging problem sets in national security, and more generally in the computational and data science realms. I’ve used approaches ranging from applied dynamical systems (PDEs and ODEs) to, more recently, unsupervised learning methods employing matrix- and tensor-decomposition frameworks. I also hold an adjunct faculty role in the Laboratory for Systems Medicine at the University of Florida, which allows me to continue to collaborate on projects in mathematical and systems biology.

I wish I had known to take advantage of all [professional societies] have to offer earlier in my career.

What I’ve come to realize is that your unique interests and capabilities, even when they may not fit easily into a clear label, do have a place in this world where they will be valued. My background in mathematical biology has given me a unique perspective on the challenges I face in my current role, both from a mathematical and applied sense. And it makes for some fun intersectional research.

Finally, I’d like to make a quick shout-out to the power of professional societies. I wish I had known to take advantage of all they have to offer earlier in my career. Societies like the American Mathematical Society (AMS), Society for Industrial and Applied Mathematics (SIAM), Association for Women in Mathematics (AWM), and Society for Mathematical Biology (SMB) all provide opportunities to network via conferences and meetings, and to learn more about opportunities in and outside of academia utilizing the skills you learn. You don’t need a minimum degree to join – just an interest to connect with like-minded researchers.

Posted by HMS in Stories
Juliet Nakakawa Nsumba

Juliet Nakakawa Nsumba

Born in Kayunga district, Uganda • Birth year 1986 • Studied Mathematics and Physics (B.Sc. with Education) at Makerere University in Kampala, Uganda • Highest Degree Ph.D. in Mathematics • Lives in Kampala, Uganda • Occupation Lecturer at Makerere University

Currently, I am a lecturer in the Department of Mathematics at Makerere University in Kampala, Uganda. It is so exciting that today I consider myself one of Uganda’s most successful women in mathematics. At my primary level, I used to struggle with mathematics but was always intrigued by the challenges it would cause me to think about. I finished my primary level with mathematics as my worst subject. My secondary education was a turnaround. I would struggle with math until one time we had a change of teacher and he gave the first test. I got a 20%, and in the second test a 40% and after that my performance drastically improved and my passion for the subject grew so that it became my best subject. My math teacher encouraged me a lot. I had to redefine my friends to have those with similar interests. I would discuss this with my peers irrespective of gender. The reading of mathematics became easier.

Regarding the negative image that mathematics was for men: I guess I refused to believe that. I saw it as a challenge that had to be solved.

After my O’ level, resources were scarce in that my parents couldn’t afford my education at the kind of schools with equipped laboratories to enable me to continue pursuing my math/science career. But they were so determined to see me excel. My mom would always encourage me not to lose hope. At that time, I belonged to a supported program of Compassion International. That is where my help came from at the moment. God used Compassion to fully provide my sponsorship throughout A’ level. Of my A ‘level subjects, mathematics still seemed easy and would still be my best. Of course, I had support from my teachers who always encouraged me. Regarding the negative image that mathematics was for men: I guess I refused to believe that. I saw it as a challenge that had to be solved. I spent most of my time with the boys. Thank God they were quite helpful. When they noted I wasn’t going away, they knew we had to work together. When I completed my Uganda advanced certificate, I was given a Bachelor of Science degree with education (mathematics, physics). To be honest, I had never dreamt of being a teacher. I wanted to do Telcom engineering. My grades couldn’t push me there. Today I am grateful that my passion and desire for mathematics never came to an end. I decided to do my best to get good grades during my Bachelor’s degree. This opened more doors for me.

(…) I decided on mathematical epidemiology. I have seen so much of its application with endemic diseases and the consistent outbreaks of new viral diseases, especially in my country.

Later I joined the African Institute for Mathematical Sciences, which provided a platform for me to see how I could use mathematics. I have always loved the application of mathematics. It is not surprising that when I decided to choose the direction for my career, I decided on mathematical epidemiology. I have seen so much of its application with endemic diseases and the consistent outbreaks of new viral diseases, especially in my country. After my Ph.D. which I completed in my home country, I felt equipped to be part of the solution to our health sector. Yes, I am still growing in my career and every day I notice my effort in changing the lives of my people and Africa as a whole.

The limited resources never stopped me from pursuing my dream – instead, I would utilize whatever opportunity I could get to excel.

Being a mathematician has changed my status; by this, I cannot consider myself poor or financially disadvantaged, I have gained respect even among my peers just because I chose mathematics up to the highest academic qualification. As a mentor on several forums, I have got a number of young people who look up to me as their role model, something I lacked as I pursued the mathematics journey. I have inspired many to pursue the subject and STEM fields. I am an advocate for girls in STEM, and sharing my story with those young people struggling and almost giving up on mathematics is my passion. Once in a while, I do outreach programmes where I get to visit schools so that I can encourage young people that they can achieve much more as others before them have achieved. The mathematics journey is always interesting, but only those who choose not to give up can succeed. The limited resources never stopped me from pursuing my dream – instead, I would utilize whatever opportunity I could get to excel. The change of attitude and not dwelling on negativity from those around me enabled me to excel.

Posted by HMS in Stories
Qiaoqiao Ding

Qiaoqiao Ding

Born in Linyi, China • Birth year 1989 • Studied Applied Mathematics at Shanghai Jiao Tong University in Shanghai, China • Highest Degree Doctor in Mathematics • Lives in Shanghai, China • Occupation Assistant Research Scientist

When I was a teenager, I didn’t know what maths studies would be like. But I always took every maths lesson seriously and finished all the maths homework quickly and correctly, which gave me a sense of achievement and satisfaction among peers. I was able to find regular patterns in numbers or common features, which I found very exciting. I was not a very confident girl, but maths gave me strength.

Therefore, I decided to study maths at the University. However, I did not feel like the smartest student and university mathematics was very different from high school. I felt a bit frustrated and didn’t know how to reduce or eliminate the gap. In the second year of university, computational mathematics appeared in my life, which can be regarded as the combination of maths and computer science. Using computer science to solve mathematical problems and translating computer programs into mathematics language are two main aspects. I was attracted by the variety of applications and began to pay more attention to this field in the following semesters. From my Master’s to my doctoral research, my major was always applied mathematics. I did not only choose it because of my interests but also due to the possibility to get into contact with different subjects. Even though I saw more and more women devote themselves to computer science and mathematics, I was still hesitant. Would I do as well as men, as I needed to spend more time with my family? Could I be successful in this field? Could I find my favorite job? I did my best to find the answers to these questions.

If I can solve a problem with mathematics and present the result with a computational method, I will feel very happy.

I encountered many difficulties during my PhD. My advisor is also a woman and she gave me a lot of good advice. She had published many excellent works in optimization and medical imaging and supported my own research immensely. After finishing my PhD, I applied for an academic job in Singapore and worked there for three years. During that time, my husband was working in the US. We had to conquer the difficulty of time and distance. In my opinion, family is a very important part of one’s whole life. Every researcher needs to balance work and life, especially women. In China, women play a more important role in the relationship between husband and wife, the education of children and the connection with friends and relatives. Two years ago, my husband decided to return to China and he found a position in Shanghai. Finding a job in the same city is a big problem for me. I received a lot of help and advice from my collaborators and friends.

Now, maths has become a part of my life. Everyday, I try to solve some problems using mathematics tools and try to deduce some theorem or lemma to interpret the methodology. If I can solve a problem with mathematics and present the result with a computational method, I will feel very happy. My husband works as an assistant professor of mathematics in a university and we can discuss many interesting topics together. I think I can say that maths is my job and my life.

If anyone meets any predicament, I would strongly recommend to struggle. Try it and you will find it worth it.

At this stage of my life, I know what I want, i.e., working on applied mathematics and realizing my ideas. In China, as a woman, I never felt deprived or discriminated against for working in the field of maths or programming at the university. In fact, the contrary is the case and most people I encounter admire that I work in maths and computer science. A common perception in Chinese society is that maths is the most difficult subject and only the smartest people work on the research of it. In China, in order to encourage woman mathematicians to work in academia, many policies about gender quota have been made. In many job applications, women will be preferred over a man applicant if they have the same research abilities.

I am satisfied about the path I took, and very happy I had the courage to choose maths. I used to be afraid that I would not do well. But I know I can do my best, even if I am not the best researcher. Many of the maths students I met went through the same process and most of them did not give up. I think that most of the students that choose maths will persevere in difficult situations. If anyone meets any predicament, I would strongly recommend to struggle. Try it and you will find it worth it.

Posted by HMS in Stories
Bernadette Spieler

Bernadette Spieler

Born in Deutschlandsberg, Austria • Birth year 1988 • Studied Information Management and eHealth at Graz University of Applied Science in Graz, Austria • Highest Degree PhD in Engineering Sciences from Graz University of Technology in Graz, Austria • Lives in Zurich, Switzerland • Occupation Professor in Computing Skills in Education, Zurich University of Teacher Education, Switzerland

Since February 2021, I have been at the Zurich University of Teacher Education (PHZH, Switzerland) as a professor for “Computing Skills in Education”. This professorship is located at two centres: the Centre for “Media Education and Informatics” and the Centre for “Education and Digital Transformation.” Previously, I was the Head of the Department of Informatics Didactics and a visiting professor (W2) at the Institute for Mathematics and Applied Informatics at the University of Hildesheim (Germany). I received my PhD in 2018 from the Institute of Software Technology at Graz University of Technology (TU Graz, Austria). At TU Graz, I worked first as a project assistant in the H2020 project “No One Left Behind“, and later as a postdoctoral researcher. I completed my dissertation on the topic “Development and Evaluation of Concepts and Tools to Reinforce Gender Equality by Engaging Female Teenagers in Coding”. For my thesis, I focused on the conception of a framework for a more gender equal classroom setting for inclusive computer science activities. This so-called “Playing, Engagement, Creativity, Creating” (PECC) framework suggests inclusive activities during different stages, considers the gender dimension in different intrinsic and extrinsic motivators, and shows how all students can benefit equally from them. It puts an emphasis on how to foster intrinsic motivators like pupils’ sense of belonging to computing fields, to generate interest for this area, to improve pupils’ self-efficiency towards computing, and finally, to bring fun elements to the classroom. Second, I developed different apps to engage girls in game design, e.g., “Luna&Cat” and Embroidery Designer.

(…) The focus in education is changing; it is less about imparting knowledge and more about enabling competence acquisition that is independent, reflective, and cooperative.

With its multitude of facets, computer science (CS) offers many exciting topics for children and young people. Girls in particular often do not have the opportunity to take an interest in such topics, or are quickly depreciated as a target group. For future generations, it is crucial not merely to use these technologies, but to understand and apply them. At the same time, the focus in education is changing; it is less about imparting knowledge and more about enabling competence acquisition that is independent, reflective, and cooperative. Education in a culture of digitality ensures the participation of all learners with their different prerequisites and equal opportunities. This requires the promotion of digital competences in a level-appropriate delivery (from school to teacher education to vocational training).

At the PHZH, I have the opportunity to reach teachers as multipliers in training and education. Various concepts such as game design, Maker-Education, or playful CS with quizzes and analogue activities enhance both inspiration and motivation. Furthermore, it is essential to dispel misconceptions that computer science is “not creative” or “too difficult”. Playing and creating games on smartphones are both popular activities for the new generation of digital natives, and therefore are a perfect match for the development of creativity, problem solving, logical thinking, system design, and collaboration skills. Particularly in my current project “Making at School“, we show exciting possibilities for interdisciplinary project work in various Maker activities. Making as a method for free experimentation, exploration, or (digital) tinkering enables new learning formats for education. Thus, Making facilitates open learning spaces with problem-solving tasks, interdisciplinary connections, and transversal competencies. For instance, technical understanding, creativity, craft skills, or concepts of sustainability and entrepreneurship are promoted.

In order to significantly influence future developments in CS didactics, I am involved in various expert groups. For example, as a product owner in the Catrobat Association, I am responsible for the development of apps to support children and young people in learning programming, as a member of the Swiss steering committee of the Informatics Beaver team, we create informatics riddles for the annual Bebras competition, as a member of the steering committee of digital switzerland (education and skilled workforce), we support the next generation of STEM students, and finally, I am a member of the working group for the curriculum development for informatics at the high school/secondary level.

The number of women in [computer science] is still very low, but there are promising ways to encourage and support more women to be deeply interested in [computer science] (…).

In my research, I address the aforementioned issues of equal opportunities in education, and highlight the importance of CS didactics within the context of education. Thereby my aim in this is to ensure greater diversity in technology. In my research, it is particularly important to empirically verify a positive effect on pupils. The extracurricular level should not be underestimated either. Since I have been offering courses specifically for girls in game design and programming for years, it was always a great wish to establish our own programming club in Zurich. With the help of the Manava-Foundation, we were able to realise our idea in March 2022 and proceeded to found the CoetryLab. From Summer 2022, we offer informatics and media courses for children and young people aged 10-20. This is intended to effectively support children in these subjects precisely where their needs are greatest.

By researching new concepts and standards in the field of gender-sensitive CS education and training, I hope to seek out and implement improvements in CS curricula, different CS-topics and to support girls and female adolescents in particular to gain CS skills. The number of women in CS is still very low, but there are promising ways to encourage and support more women to be deeply interested in CS and I am confident that gender-conscious pedagogy, especially in areas of CS education, is particularly useful and necessary!

Posted by HMS in Stories
Nancy Reid

Nancy Reid

Born in Niagara Falls, Canada • Birth year 1952 Studied Statistics at the University of Waterloo in Waterloo, Canada • Highest Degree PhD in Statistics • Lives in Toronto, Canada • Occupation Professor, Department of Statistical Sciences, University of Toronto

As a professor my days are busy with teaching, research, and committee meetings. I enjoy all three, but my research time is special, as that’s when I get to do whatever interests me the most at the time, and there is always more to discover. Currently I’m working on some mathematical problems related to the theory of inference, and a colleague and I have been working with some astronomers to help analyse their data.

The research environment at Stanford was so exciting that I became completely hooked, and have made my entire career in academia.

I majored in mathematics as an undergraduate, but my plan was to specialize in computer science, as that was rumoured to be “the future” (in 1970). I did some programming, and realized I had no talent for that at all, but I really enjoyed the statistics courses. That was my first glimpse of using mathematical and statistical ideas for advances in science, medicine, health, social science, you name it!, and I found that fascinating. I was quite unsure about graduate work, so I went to the University of British Columbia for an MSc degree, and then I thought I would look for a ‘real job’. But that degree required a research thesis, and I got hooked on research. I had great advisors at UBC who steered me to Stanford for graduate work. Without their encouragement I’m sure I would not have had the courage to consider this. The research environment at Stanford was so exciting that I became completely hooked, and have made my entire career in academia.

So even if I was the only woman on seven hiring committees in a row, when I went to an international conference, or a small workshop,  I would go to women’s talks, introduce myself to women in groups, and seek out “my people”.

At many times in my career, I was often the only woman in the room and it was sometimes lonely. I got used to it, because there didn’t seem to be many options, but it’s not as nice as having more women in the room. Something that helped me was to make sure to seek out women when I had opportunities, for example at conferences. So even if I was the only woman on seven hiring committees in a row, when I went to an international conference, or a small workshop,  I would go to women’s talks, introduce myself to women in groups, and seek out “my people”. I made some great friends along the way. As I got older, and felt the situation was changing only very slowly, I became more outspoken about the lack of diversity.

The biggest shock to the system though was having children. I was already full professor and relatively old when my first (of two) daughters was born, and even with great support from my partner, and a well-established career, it was a challenge.

I was very fortunate to have very helpful mentors at every stage in my career, for which I am still grateful. I’ve tried to “pay it forward” by being encouraging to students and young faculty. While I never felt actively discriminated against at all, I did notice at some point fairly far along in my career that men were actually listening to me in meetings, and I was so surprised that I deduced this was rarely the case when I was younger. The biggest shock to the system though was having children. I was already full professor and relatively old when my first (of two) daughters was born, and even with great support from my partner, and a well-established career, it was a challenge. When younger colleagues starting families ask me for advice, I always say “Accept as much help as you are offered, and buy as much help as you can afford”.

Posted by HMS in Stories
Pêdra Andrade

Pêdra Andrade

Born in Pedrinhas – Sergipe, Brazil • Birth year 1989 Studied BSc in Mathematics at the Federal University of Sergipe (UFS) in Aracaju, Brazil • Highest Degree PhD in Mathematics at Pontifical Catholic of Rio de Janeiro (PUC-Rio) • Lives in Lisbon, Portugal • Occupation Postdoctoral researcher at IST – University of Lisbon

I decided I wanted to be a math teacher when I was eleven years old. It’s funny to remember that at such a young age, I already knew what I wanted to do with my life. I always had one of my biggest inspirations at home, my mom was a high school teacher and she loves math. I also enjoyed studying math and its accuracy always enchanted me.

Another of my goals was to study math at the Federal University of Sergipe (UFS), the only public university in Sergipe. This was one of the first challenges that I had on this journey. I studied hard to get into university. Fortunately, I got into UFS.

At the beginning of College, everything was amazing, I was living the dream. Even though I had many difficulties with the adaptation process to the university, the new city, and also living far from home, I had the courage and perseverance to tackle each of them. I believe that dealing with our inner selves is one of the biggest challenges we face when studying mathematics. Staying motivated and confident is hard work. This field of science is very beautiful but at the same time very difficult. During this time, I had the pleasure to interact with great professors who inspired me to continue studying mathematics. I’ve always been delighted by the mathematical concepts and the arguments that we use to produce the  beautiful math demonstrations.

Staying motivated and confident is hard work. This field of science is very beautiful but at the same time very difficult.

At this point, I decided to get my Master’s degree in mathematics. At that time, I had no idea what being a researcher was like. Different from my Bachelor’s, I was the only woman in the class. I started to feel like I didn’t belong in that space. I no longer felt comfortable talking and exchanging ideas with my colleagues; it was impossible not to compare myself with the others and I tried to fit in.

Even though I had many difficulties, I got  my Master’s degree. I survived and thanks to my desire to never give up I started my Ph.D. in math at PUC – Rio. As I studied commutative algebra during my Master’s degree, my first thought was to continue studying this subject, but there was no specialist Professor at the time at PUC – Rio. Looking back, I think this was a good thing, as it opened up so many possibilities. Trying to find myself I attended a seminar that focused on partial differential equations (PDEs) with algebra ingredients. I always had this enchantment in studying subjects at the intersection of many fields. I was very glad to see these connections as an example of the magnitude of the study of PDEs and their applications.

Trying to find myself I attended a seminar that focused on partial differential equations (PDEs) with algebra ingredients. I always had this enchantment in studying subjects at the intersection of many fields.

During my doctorate I had the opportunity to attend many scientific events including gender initiatives, give presentations, and I also had the opportunity to study at the University of Central Florida as a Visiting Fellow. After completing my Ph.D., I visited the Centro de Investigación en Matemáticas (CIMAT) in Mexico and held a postdoctoral position at São Paulo University, São Carlos in Brazil. These experiences contributed significantly to my research career, because I learned so much mathematics, but also I got some independence and learned a little bit about how a researcher’s career works. I am extremely grateful for the many special people who supported me throughout this journey.

It is worth mentioning that one of the biggest difficulties I deal with during my journey is the feeling that I have to be strong all the time. I’m not supposed to make mistakes and I do have to know the answers to every question. Nevertheless, the challenges inspire me and arise my curiosity. This is the feeling that moves me to overcome the difficulties that appear to me as a mathematician, such as learning new PDE methods or gender issues. For me, the scientific and human exchange is one of the greatest gifts the profession has given me. 

My research area concerns the study of regularity theory, the existence and the uniqueness of the solutions to elliptic and parabolic equations. Currently, I am a postdoctoral researcher at Instituto Superior Técnico (IST) – University of Lisbon and I am very excited to write this new chapter of my career as a woman in science.

Posted by HMS in Stories
Maurine Atieno Songa

Maurine Atieno Songa

Born in Kenya • Birth year 1986 Studied Mathematics at the University of Nairobi • Highest Degree MSc in Applied Mathematics from the University of Kwazulu-Natal • Lives in Durban, South Africa • Occupation PhD student at the University of Kwazulu-Natal and Assistant Lecturer, Kisii University, Kenya (on study leave)

I am currently pursuing a PhD degree in mathematics at the University of Kwazulu-Natal. My research uses the language of category theory, which is the study of objects and relationships between them, to unpack and understand real-life phenomena. The areas for its application are vast and include engineering, computer science, neuroscience, systems theory, and general relativity. This journey has indeed been a dream come true. I have loved mathematics since grade five, when I surprisingly performed well in an exam that brought together students from the whole district. I hadn’t always performed well before and I hadn’t been remotely aware that I could do well in mathematics. However, once I topped that exam, there was no going back. My mathematics teacher had taken notice that I could do well in mathematics, and he kept me on my toes. With more effort, I found the subject easier and more enjoyable than the rest. I enjoyed calculating sums and rejoiced when I got them right. It was as though a new world had opened up for me and the escape I found within it brought me peace. I also enjoyed teaching my classmates the concepts which they found difficult. In a way, my destiny had been sealed.

At higher levels of study, the main challenges we faced were a lack of resources and scarcity in the woman role models that we could look up to.

I must admit that the journey hasn’t always been easy. Much as the teachers encouraged us and pushed us to work hard, it wasn’t often easy to see the future that they envisioned. It was tough growing up in a village which had been ravaged by HIV/AIDS. Most of us were being raised up by grandmothers who were now frail. As my mother had died when I was eight years old, I had to rely on bursaries and scholarships to get through most of my schooling. It also wasn’t common for girls to love mathematics or to excel in it, and so, negative remarks were often made about mathematics. A narrative was pushed that mathematics was meant for boys, and that girls who loved it were to be feared. But the love, passion, and the escape that mathematics provided, together with the pressure and encouragement from the teachers, was enough to help me push through.

At higher levels of study, the main challenges we faced were a lack of resources and scarcity in the woman role models that we could look up to. We got to learn essential skills like programming so late, and even then, most of what we learned was theoretical. As such, we did not have the full knowledge required to forge forward in mathematics. Our knowledge about possible career avenues was also limited. In graduate school, I have struggled with imposter syndrome, a feeling that you are not worthy. Sharing this experience with a few colleagues has led me to the realisation that most of us struggle sometimes, especially those who came from humble backgrounds. My friends and colleagues have taught me to push back that negative voice and to often remember how far we have come.

To me, knowing these incredible women, and knowing that they, just like me, have overcome so much to get to where they are, is a testament that women are capable of extraordinary achievements in mathematics and other STEM-related areas.

There have been notable influences without which I couldn’t have reached this far. Attending the African Institute for Mathematical Sciences (AIMS) opened my eyes to the vast areas of applicability in mathematics. The networks they provided have proved invaluable. It was great getting to meet other women from Africa and finding out that we all had similar challenges growing up, and yet, with persistence and a little luck in terms of scholarships, we managed to push through. We could now cultivate and find inspiration amongst ourselves. I know that there are many heroes in the world of mathematics, but those who inspired me the most were peers I met during graduate school. I get inspired every day by exemplary woman peers who have gone ahead of me and attained their doctorates in mathematics. To me, knowing these incredible women, and knowing that they, just like me, have overcome so much to get to where they are, is a testament that women are capable of extraordinary achievements in mathematics and other STEM-related areas.

As such, it is imperative to teach our girls from early on that their gender does not prohibit them from excelling in the sciences or any career that has traditionally been set aside for the men. It should be our prerogative to instill in them that they too can be at the core of discoveries in mathematics, physics, chemistry, biology and engineering and that they can become whatever they dream and work hard towards. Girls need to know that there is much more that they can achieve in life if they work hard towards it. I am grateful to forums like Her Maths Story for highlighting our stories and for working towards changing the narrative.

Posted by HMS in Stories
Claudia Garetto

Claudia Garetto

Born in Asti, Italy Studies Mathematics at Torino University, Italy • Highest Degree PhD in Mathematics • Lives in London, UK • Occupation Reader in Mathematics at Queen Mary University of London

My love for Mathematics started at an early age. I remember one day in scuola media (middle school in Italy) when my maths teacher sketched the graph of a function on the blackboard. She was explaining linear motion and I was blown away. I saw how maths relates to real life and how beautiful it is to explain maths, which is often considered a difficult topic, to others. I just wanted to be like her: a mathematician solving equations and sketching graphs on a blackboard, and this is exactly what I do now. It has been extremely important for me to see women do the job I am doing now. In Italy it is quite common for girls to study mathematics at university and to have women maths teachers in school: growing up I never thought that maths was a “boy” subject. Later, when I moved to Austria for my PhD studies and then to the UK for my first permanent academic position, I realised how lucky I had been.

Equality, Diversity and Inclusion (EDI) activities are becoming more and more important (I am the EDI lead in my school), so I hope the gender gap will become smaller and smaller in the future but there is still a long way to go…

In both of these countries, women are a minority in STEM and it is unfortunately still common to have almost no women professors in many maths departments. Consequently, it is still a struggle to motivate the best women maths students to take the academic route. Equality, Diversity and Inclusion (EDI) activities are becoming more and more important (I am the EDI lead in my school), so I hope the gender gap will become smaller and smaller in the future but there is still a long way to go…

As an undergraduate at Torino University I loved Mathematical Analysis. I found the formalism of pure mathematics beautiful and reassuring and I got more and more attracted to the idea of proving my own theorem, of constructing my own mathematical theory. That’s how my original plan of becoming a maths secondary school teacher changed into becoming a researcher and to establish myself as an academic.

Every move has meant for me to grow as a mathematician but more importantly as a person. I have learnt to be resilient but also to be flexible, adaptable, and open-minded.

I apparently had a very straightforward career path: PhD, postdoc, permanent position. However, I changed countries twice. In 2002 I moved from Italy to Austria to conclude my PhD studies. After 8 years at Innsbruck University, I moved to Imperial College London as a Junior Research Fellow and in 2012 at Loughborough University as a Lecturer. I have recently moved to Queen Mary University of London where I am currently working on the analysis of hyperbolic equations and systems with multiplicities: an extremely fascinating area of mathematics. Every move has meant for me to grow as a mathematician but more importantly as a person. I have learnt to be resilient but also to be flexible, adaptable, and open-minded. These are in my opinion extremely important qualities in any social and work environment.

I often talk to girls of school age approaching the university world of mathematics. My only advice to them is to follow their passion. If you are passionate about maths nothing will stop you! It will not always be easy. Failure is normal but with your dedication and the support of the right people (colleagues, supervisor, mentor) you will overcome every obstacle.

Posted by HMS in Stories
Shanti Venetiaan

Shanti Venetiaan

Born in Suriname Studied Mathematics at Leiden University, The Netherlands • Highest Degree PhD in Mathematics • Lives in Suriname • Occupation Professor at the Anton de Kom University, Suriname

I think that I have always been interested in mathematics. I was a curious child and I liked puzzling. I always requested puzzles for my birthday, like the Jigsaw ones. At school, mathematics was my favorite subject. Moreover, my father is also a mathematician. So by the time that I had to choose a course of study at university, it was very clear that it had to be mathematics.

I was not actively pursuing an academic career when I started university.

Given that Suriname was a former Dutch colony, it was very common for Surinamese students to study in the Netherlands. So it was almost a natural choice for me to go there as well. All my school mates went to the Technical University in Delft, but I decided to go to Leiden University: the same university where my father had studied. 

I was not actively pursuing an academic career when I started university. I do remember reading the leaflet that described all the steps leading to a PhD and beyond. At that moment, I realized that that was what I wanted for myself. After I did my final thesis in Leiden, my thesis advisor moved to the University of Amsterdam. He asked me whether I was interested in becoming his PhD student. Still, I was not sure what to do at that moment: I had been in the Netherlands for five years already and I was ready to go back home to Suriname. When I discussed this with my parents though, they persuaded me to stay and to take the opportunity, so I did. Now, I can say that I am very happy with my decision!

The academic life here mainly revolves around teaching, and there is no real research environment. But we are working hard to change this.

When I came back from the Netherlands after my PhD there was no mathematics department at the Anton de Kom university and I was hired in the School of Technology instead. The academic life here mainly revolves around teaching, and there is no real research environment. But we are working hard to change this. Our bachelor program in mathematics recently got accredited and we are trying to build a research culture. One of the main difficulties we are facing is the lack of expertise: I am the only person with a PhD in mathematics in the country. Suriname is a very small country with a population of around 500,000 people, so it is common to be the only one with a certain expertise. But it is a nice challenge, and I like it!

My advice to young students who enjoy mathematics is to follow your heart. If mathematics is where your heart is, then do it! It is a beautiful subject.

To overcome this lack of expertise, we are initiating more collaborations with foreign universities. For instance, the pandemic opened new possibilities for our students: they could now follow online lectures from universities all around the world. I hope that similar opportunities will continue after Covid-19 and that they will become official partnerships, as this will provide more opportunities to our students.

My advice to young students who enjoy mathematics is to follow your heart. If mathematics is where your heart is, then do it! It is a beautiful subject. If you like puzzling, it is very fulfilling. Furthermore, mathematics provides you with a training in abstract thinking that you can use anywhere!

Posted by HMS in Stories
Evi Papadaki

Evi Papadaki

Born in Crete, Greece • Birth year 1992 Studied Mathematics at National and Kapodistrian University of Athens in Greece • Highest Degree MSc in Mathematics and Its Applications at University of Crete in Greece • Lives in Norwich, UK • Occupation PhD researcher in Mathematics Education at the University of East Anglia, UK

Either by chance or by choice, I always found maths attractive. My mum is a maths teacher, her sisters, too. So, I was regularly in the middle of casual maths conversations growing up. I was observing my mum teaching sometimes, and I was reading her maths books when I was bored. One of the advantages I had as a child was seeing my mum preparing for her lessons and devoting herself to solving problems, struggling, spending time on them, discussing methods and solutions with her sisters. I never found maths easy, but I knew that dedicating time was part of what made it meaningful, and I was up for it.

I remember when I was about 9 years old, I told my dad that I wanted to become an astrophysicist. He was very excited trying to explain ‘the plan’ to me: I had to finish school and study physics, then I should do a masters and a PhD in Astrophysics. I was shocked by the amount of work that I had to do and that was the moment I decided to become a maths teacher. As naive as it sounds, I thought I was doing well at maths already so I could teach others (!).  Yet here I am, 20 years later and having realised the complexity of the work, doing a PhD trying to understand how a teacher can talk to her students about mathematics.

I felt like I always knew about the Pythagorean Theorem. Before I even knew how to read or write, I could quote it without knowing what that means. I learnt how to use it in secondary school. I learnt what it means in high school and a teacher told us that it has over 300 different proofs.

I started thinking about the possibility of studying for a PhD in Mathematics Education in my final year as an undergraduate. I found it fascinating how all the things I’ve learnt throughout the years connected with each other as a gigantic 3D jigsaw puzzle. For example, I felt like I always knew about the Pythagorean Theorem. Before I even knew how to read or write, I could quote it without knowing what that means. I learnt how to use it in secondary school. I learnt what it means in high school and a teacher told us that it has over 300 different proofs. I learnt a couple of the proofs at university. Finally, I learnt that it can be generalised with other shapes and in more dimensions from a video on YouTube.

For me mathematics was never just a subject in school. It was a process of discovery inside and outside of the classroom and I wanted to study if there was a way to spark the curiosity of my students beyond the boundaries of a curriculum or programme of study.

I met people who thought teaching mathematics is purely applied pedagogy and disregarded my mathematical abilities because of that. I met people that thought I was wasting my potential as a mathematician. […] None of them is true!

When I decided that I wanted to follow a career in Mathematics Education research, I had the full support of my family, my friends and my mentors. Nonetheless, I had to fight a few stereotypes on the way. I met people who thought teaching mathematics is purely applied pedagogy and disregarded my mathematical abilities because of that. I met people that thought I was wasting my potential as a mathematician. I also met people that assumed that I am doing a quantitative study as I must be good in statistics. None of them is true! I am doing a qualitative study of how a teacher can talk to her students about mathematics in ways that are not anticipated in a typical mathematics lesson. For my project, I need to unpack the mathematical meaning of the conversations that take place between teachers and students. So, I challenge what I know about mathematics almost every day and I have learnt a lot more than I ever thought I would. Moreover, I am working at the student services of my University helping students with their maths, so I have the chance to expand my horizons in the variety of applications of mathematics making my interest in teaching and learning mathematics in ways that could aid students in different aspects of their personal and professional life even greater.

Looking back, I am grateful that those comments didn’t bring me down.

Posted by HMS in Stories