Academia

Nishu Kumari

Nishu Kumari

Born in India • Birth year 1996 • Studied M.Sc in Mathematics at the Indian Institute of Technology Kanpur • PhD in Mathematics from the Indian Institute of Science (IISc) Lives in Vienna, Austria PostDoctoral Researcher at the University of Vienna’s Faculty for Mathematics

I grew up in a village of Haryana, a state in Northern India. I was drawn to maths from an early age because I was good at solving maths problems. After completing college education from Haryana, I successfully passed the entrance exam for a prestigious institution in India, IIT (Indian Institute of Technology) Kanpur,  to pursue a Master’s degree in Mathematics. Since the exam is highly competitive, I consider being admitted to this institution as one of my greatest achievements.  

During my stay at IIT, I realised that maths is more about testing your understanding of concepts and less about calculations. That’s when I also realised grasping a mathematical idea gives me immense satisfaction and decided to study mathematics at a higher level.

Before my entrance exam I wasn’t even sure I would be able to rank highly enough to be admitted. It was a very big moment for my entire family when I did as I was the first person in my family to get admission at IIT . We never imagined that this would even be possible.

During my stay at IIT, I realised that maths is more about testing your understanding of concepts and less about calculations. That’s when I also realised grasping a mathematical idea gives me immense satisfaction and decided to study mathematics at a higher level. I joined the Indian Institute of Science (IISc) for my Ph.D.

After completing my doctoral studies last year, I am currently working as a postdoctoral researcher at the University of Vienna, Austria. I am part of a large research group focused on discrete random structures with my personal focus being on algebraic combinatorics. 

Algebraic combinatorics uses tools from algebra to solve problems in combinatorics, thereby acting as a bridge between the tangible world of counting objects and the abstract world of formulas. For instance, by using algebraic combinatorics we can solve everyday problems such as organising wedding seating charts where certain guests must sit together or better be kept apart, drawing up sports schedules where every team plays each other exactly once, or designing music shuffle algorithms that feel truly random by avoiding song groupings from the same artist.

I feel that many women, especially in India, might not know what exactly having a career in maths actually means or even that they can pursue a career in this field. I believe it is important to tell them that this is an option.

In terms of mathematical research, I have encountered a lot of diversity in Vienna. I have found a lot of great people to collaborate with around me, especially since our research group is fairly large with over 20 members. 

As an Indian woman in mathematics, the environment I trained in featured very few women. It was discouraging sometimes. I feel it would have helped me, if there had been more women doing what I was doing at the time.

I feel that many women, especially in India, might not know what exactly having a career in maths actually means or even that they can pursue a career in this field. I believe it is important to tell them that this is an option.

However, there have been some great ideas and steps to bring more women into existing institutions. I can see that the number of women being admitted into Indian maths institutes is increasing.

Women’s education in general is on the rise. In the village I grew up in, people weren’t keen on  women to study when I was young, but now they encourage  their girls to get an education. This is a rather unexpected side effect of the rising cost of living. As a result, women are now encouraged to pursue paid work.  

My dream for the future is to first build a career in academia. In future, I would like to return to India and work to inspire more Indian women to get involved in maths. This is my way of trying to help future generations of Indian women be more represented if they choose mathematics as their career path. 

Published on January 28, 2026.
Photo credit: Shivangi

Posted by HMS in Stories
Lisa Hefendehl-Hebeker

Lisa Hefendehl-Hebeker

Born in Germany • Birth year 1948 • Studied Mathematics at the Universities of Münster and Tübingen • Habilitation in Mathematics • Lives in Düsseldorf, Germany • Senior Professor of Mathematics Education at the University of Duisburg-Essen

I enjoyed math at school because I was good at the problems and really liked the inner clarity and regularity of the subject.

The transition to university mathematics was extremely difficult for me at first because I had to overcome a huge gap. But after a year, I made a breakthrough, and from then on, I gained a foothold and my appreciation for the subject grew steadily. 

I had my first experience of deep amazement when I was preparing for a linear algebra exam. When studying Jordan normal forms, I suddenly realized what a magnificent overview this provided of what initially seemed to be an overwhelming variety of matrices, and what potential mathematical theory formation can unfold in terms of intellectual organization.

The interplay between mathematical content and questions and observations about how people deal with it in work processes was to become an important guiding principle for my future career

In the second part of my studies, I had the opportunity to participate in a working group led by my future doctoral supervisor I and was able to listen to the insider communication between advanced members. This gave me important insights into what motivates professional mathematicians—which questions they find interesting and which methods and results they consider remarkable, how they base their assessments on these, but also which informal, often metaphorical means of communication they use in the run-up to formally elaborate representations. These experiences have greatly enriched my relationship with mathematics. The interplay between mathematical content and questions and observations about how people deal with it in work processes was to become an important guiding principle for my future career.

It so happened that I was assigned a dissertation topic that also involved a classification problem (four-dimensional quadratic division algebras over p-adic fields), and so a bow was drawn back to my first experience of admiring a mathematical achievement. While working on this, I also learned how inevitably successful problem solving in mathematics can depend on the favor of a good idea. You can prepare the ground for helpful ideas through persistent work, but you cannot force them. I was very grateful that productive ideas for solutions did eventually come to me in time.

(…) I read a lot of mathematical literature and noticed with regret that, over the course of history, presentations had become more sober and formal, and that human emotions and accompanying epistemological considerations had been largely stripped away in the face of mathematical discoveries

During my doctoral studies, I read a lot of mathematical literature and noticed with regret that, over the course of history, presentations had become more sober and formal, and that human emotions and accompanying epistemological considerations had been largely stripped away in the face of mathematical discoveries. The more I missed this aspect, the more my interest grew in the question of how mathematical knowledge develops in an individual, what thought processes and attitudes play a role in this, and how consciousness is refined during these processes. These were the reasons why I turned to mathematics education after completing my doctorate, and fortunately, life gave me the opportunity to make this field my profession.

After a long career, I am convinced that at every level of learning, it is possible to create an authentic picture of mathematics and convey an impression of how mathematics forms its own world of well-ordered structures with a striking internal consistency, and how this is precisely what makes it so effective in applications.

Published on January 14, 2026.

Photo credit: FAU/Ianicelli/Aslanidis

Posted by HMS in Stories
The Piscopia Initiative & How to Train Your Allies present: What Can You Do?

The Piscopia Initiative & How to Train Your Allies present: What Can You Do?

A practical guide for those wishing to improve gender diversity in mathematical research

by Rosie Evans & Ashleigh Ratcliffe

Rosie Evans and Ashleigh Ratcliffe have written a booklet entitled “What can you do?” which is a practical guide for those wishing to improve gender diversity in the mathematical sciences. It is based on previous events run by The Piscopia Initiative and How to Train your Allies as well as advice from academics across the UK.

Content of the booklet

The booklet offers advice on topics such as effective mentorship, contextualising mathematics courses at undergraduate level and debunking myths about PhD study. The booklet explores how staff and students can support underrepresented genders based on their role and expertise, with the objective to empower those who don’t know how best to help. Each chapter discusses a few themes followed by a space for reflections or a template to fill in. In this blog, we highlight a couple of the chapters and suggest some ways that allies can help within their roles.

Invisible workload

One of the key themes addressed in this booklet is the concept of the “invisible workload” which refers to tasks that are done during a job that are generally classed as “non-promotable”, a term coined by Babcock et al. in their book “The No Club: Putting a stop to women’s dead-end work”. They found that women are more likely to be asked to do service tasks, and have a greater risk to their reputation should they say no. We talk in this chapter about how this applies to those in academia. Tasks like sitting on various panels and committees, having impromptu career chats with students, organising timetabling, often fall on women more heavily. They are tasks that are often worthwhile to the department, and can be time-consuming. However, they are not proportionally accounted for when it comes to progressing your career and can take away valuable time from research.

As a starting point we make a couple of recommendations on raising awareness about the distribution of these tasks. Our suggestions are pitched as individual changes, however this issue is something that needs institutional buy-in to have widespread impact. For example, if women are required to sit on certain committees or interview panels, an ally could complete some of the administrative preparation to reduce the overall time commitment or mental load needed. Furthermore, if a woman is needed, then their role should reflect their specific expertise. The tasks that don’t require specific skills (e.g. writing up meeting notes, booking rooms etc) could be covered by an ally who does not have as many demands on their time.

We noticed when writing this booklet that this “invisible workload” is already present for PhD students. Our community said that they often feel they do a disproportionate amount of (volunteer) service tasks for their universities. We suggest that departments keep track of the service work done by PhD students (talking at careers fairs, being a part of student-staff committees) and consider alternative methods of finding volunteers. For example, a rotating schedule is the fairest way to allocate roles and reduces any unconscious biases sneaking in when asking for volunteers. As an ally, when you need volunteers, we suggest you consider the following: 1) Am I asking the people who I know are most likely to say yes?; 2) Have I asked these people previously?; 3) Is the person I’m asking already committed to other extra-curriculars?

It can be easy to think “they can just say no if they’re busy”, but the research shows that women are less likely to say no and as a PhD student there is the added pressure of fitting into a department where you are the earliest in career stage. The onus should be shifted to the person seeking help rather than on the student to say no.

Contextualising mathematics

We also talk about how lecturers can add context to their modules that will contextualise the way maths has been constructed through history. We spoke to Dr Jamie Mason at Durham University about their experience contextualising their representation theory course last year by providing a brief history when each new mathematician was mentioned. They noted that in representation theory, it was predominantly white, European men who were recorded as making the main advancements and so tried to acknowledge this during the sessions.

“As I progressed through the course, I began to notice that the vast majority of mathematicians were from late 19th or early 20th Century Germany, with a few British or French exceptions. Certainly, they were all men.”

Jamie suggested the following questions to assess your own modules:

  • Are there any patterns in the mathematicians in this area (e.g., are they predominantly one gender)?
  • In the time frame of these mathematical advancements, were particular groups excluded from mathematics?

They suggested that if there was a mathematician from an underrepresented group at the time, to make sure that they are highlighted in lectures. On our webpages, we suggest a few resources that have already been made where you can find key examples to include.

Jamie also said that when introducing mathematicians, they tried to give interesting (or scandalous) facts about them. There’s more to mathematicians than just their work, and so acknowledging their wider life can open up discussions about the ethical considerations of mathematics.

“Adding a contextual narrative will help students realise that the mathematics they learn was not developed in a vacuum, but influenced by the time and place of the society. I hope that this helps them become more conscientious and well-rounded students.”

We provide a template table for lecturers to use to log the mathematicians that are mentioned within their courses, to help them spot patterns and think about how this could be addressed in lectures.

Breaking barriers

Other chapters in the booklet cover things you can do for a student and for a member of staff, with a key theme around career building and navigating a research career.

A key aim of the Piscopia Initiative is to raise awareness of the PhD option for students of a gender minority in the mathematical sciences. A barrier to entry, even with sufficient grades and research interest, is a lack of knowledge as to what a research career looks like. To attempt to fill this gap, Piscopia hosts information events for students to find out these details. Piscopia also hosts PiWORKS, a monthly seminar series aimed at undergraduates and masters students to see different areas of research and showcase the work of women and underrepresented gender researchers, and their routes into research. 

We acknowledge that opportunities can arise due to who you know or are introduced to. Sharing of information, opportunities and networks is invaluable, especially to first generation PhD students and minoritised groups. However, there is a caveat that just because something is aimed at a certain group, it does not mean you should send it to everyone belonging to that group. We suggest that you should send opportunities thoughtfully, especially if you think the person would be a good fit. It’s a great confidence boost for anyone to hear that a colleague thinks they are worthy of some new opportunity or prize, so try to be specific in your recommendations where possible.

We suggest building a spreadsheet of opportunities (not necessarily limited to specific groups, but make note of requirements where necessary), and provide a template to get you started. By building your awareness of opportunities outside of your own field or expertise means that niche grants and opportunities are more likely to reach the researchers that may benefit most from them.

How to access

A downloadable version of the booklet is available on both of our websites (The Piscopia Initiative | How to Train Your Allies), alongside a list of useful related resources and a HTML version of the booklet. Upon request, we can also provide a printable version.

About the initiatives

How to Train your Allies is a group founded in 2022, who create resources to support staff and students to be effective allies within their departments. Their website has materials about how to be an ally on both an individual scale as well as promoting allyship to your institution via an interactive workshop.

Website: https://sites.google.com/view/how-to-train-your-allies
Contact: howtotrainyourallies@gmail.com

The Piscopia Initiative was founded in 2019 and is a nationwide network of women and underrepresented genders with 16 committees at UK universities. Piscopia aims to improve gender diversity in mathematical research by highlighting role models, creating a supportive network to ask questions, encouraging a culture of belonging and hosting events to encourage more women and underrepresented genders to apply for a PhD.

Website: https://piscopia.co.uk/
Contact: piscopiainitiative@gmail.com

About the authors

Rosie Evans is currently a Learner Developer in Maths at Birmingham City University, having not long graduated with her PhD in Applied Mathematics from the University of Birmingham in July this year. Her PhD topic was focused on mathematical biology, specifically using differential equations to model hydrocortisone replacement treatment. Born in Shrewsbury, she first studied her BSc at the University of Exeter before returning back to the midlands for her masters and PhD. She has been an advocate for equality, diversity and inclusion throughout her career, acting as a committee member and then co-lead of the Piscopia Initiative from the years 2021-2024. Alongside this, she co-founded the “How to Train your Allies” group in 2022 during her PhD. Her goal is to help researchers not only understand why the gender gap exists in mathematical research, but to be empowered and equipped to help reduce it.

Ashleigh Ratcliffe is a current final-year PhD student and Graduate Teaching Assistant at the University of Leicester. Her research is in number theory and involves solving Diophantine equations, these are polynomial equations with integer coefficients for which we are trying to find integer solutions. Originally from Leicester, she studied a BSc in Mathematics at the University of Leicester. She is passionate about outreach and inclusion in mathematics and is a co-lead of the Piscopia Initiative and regularly writes for and edits Chalkdust magazine.

References

[1] Evans, Rosie, and Ratcliffe, Ashleigh. What can you do? – A practical guide for those wishing to improve gender diversity in mathematical research [Booklet], 2025. Available at: https://how-to-train-your-allies.github.io/what-can-you-do/ and https://piscopia.co.uk/what-can-you-do/

[2] Babcock, Linda, Brenda Peyser, Lise Vesterlund, and Laurie Weingart. The no club: Putting a stop to women’s dead-end work. Simon and Schuster, 2022.

Published on November 26, 2025.
Credit graphics of the women on the header image: Meg Evans (Instagram: @megserplet_artist)

Posted by HMS in Blog
Ilse Fischer

Ilse Fischer

Born in Klagenfurt, Austria • Birth year 1975 Studied Mathematics at the University of Vienna in Austria • PhD in Mathematics from the University of Vienna Austria • Lives in Vienna, Austria Professor of Mathematics and Vice-Dean, Faculty of Mathematics, University of Vienna

I was drawn to maths not because of my background, but because it came naturally. I loved being good at maths. Even though my father was a university professor in math education, he never pushed me into this field.

My inspiration instead came from the simple content we learned at school. I enjoyed mathematics as a creative process with very strict rules and gained immense satisfaction from overcoming these rules to achieve success. If I am perfectly honest, another reason was that I was just really good at maths in school, which boosted my ego. I enjoyed it when my peers asked me for help.

My Career Path – Between Klagenfurt and Vienna

After studying mathematics for 5 years at the University of Vienna, I returned to my hometown, Klagenfurt. I really appreciated the relaxed pace of living in Klagenfurt compared to Vienna. The position was in applied mathematics, with a focus on optimization. Optimization in mathematics refers to calculations identifying the best solution among a set of alternatives, such as the quickest route via train from Vienna to Paris if one transfers at a third train station. This was quite different from my original focus on pure mathematics.

To me this offer in pure mathematics was akin to winning the lottery, which is why there was no question that I would return to Vienna.

During my time in Klagenfurt, my mathematical taste was strongly shaped by my professor, who, like me, really enjoyed mathematical problems that are easy to state but hard to solve.

After a few years in Klagenfurt, I ended up back in Vienna having an offer for a postdoctoral position. To me this offer in pure mathematics was akin to winning the lottery, which is why there was no question that I would return to Vienna. Here, I returned to my initial field of pure mathematics. My specialty now is enumerative combinatorics. In enumerative combinatorics, our job is to count possibilities such as how many ways can you shuffle a deck of cards or how many different routes exist between two points in a grid.

Why Combinatorics?

Combinatorics used to be a bit of an underdog in mathematics.

What I love about combinatorics is that the problems are very easy to state, but hard to prove. Furthermore, it’s a very accessible field that does not require extensive reading in order for doctoral students to start working in it.

Combinatorics used to be a bit of an underdog in mathematics. However, it is valuable for applications in diverse fields such physics and statistics, and therefore now seems to have become a rising star, which I find really satisfying to witness.

Some people, not least my father, ask why I chose pure mathematics over applied mathematics. What drives me particularly in pure mathematics is the aesthetic aspect, the desire to do something nice. I also really enjoy working on blue skies research (where the immediate applications are not yet known) and chasing deep discoveries. This can lead to revolutionary and useful outcomes in the long run that we can’t even predict at the time of doing the work, which feels very inspiring.

My Advice to other Mathematicians

My advice to others would be to always follow your own taste and concentrate on your chosen field. I believe success comes from motivation rather than pressure.

Yet over time, I started to appreciate that a very satisfying aspect of mathematics is establishing intellectual connections with other people.

My second piece of advice is to forge intellectual connections and work collaboratively. I started out working alone, partially because, when I was applying for positions in the early 2000s, people looked closely at whether you had single-authored papers. It was also what suited me best at the time, probably due to the fact that I was a woman in a male-dominated field. Yet over time, I started to appreciate that a very satisfying aspect of mathematics is establishing intellectual connections with other people.

My Thoughts on Women in Mathematics

When it comes to the struggles of women in mathematics, I do believe a contradiction exists. I am on a lot of hiring committees, and I have observed that if women publish with other people, the committee members often end up saying, “Well, she didn’t do it.” And I find it incredibly frustrating that this still happens.

This is why I would say as a female mathematician, a smart choice is going for a balance of single-author papers and collaborations. But maybe more importantly, you should do what you think suits you best.

I hope that we will get to a point in the future where a woman can be an excellent mathematician without it being remarked upon as something out of the ordinary.

Another aspect about being a woman in mathematics that frequently causes me irritation is that people feel very surprised when they find out that I am a mathematician. When they hear this, they usually assume that I’m a high school teacher. Then they find out that I’m a professor and are even more surprised. I don’t think that’s good news, and I do think that this is just down to my gender.  While it creates some funny situations, it shouldn’t be the case in 2025.

I hope that we will get to a point in the future where a woman can be an excellent mathematician without it being remarked upon as something out of the ordinary.

Published on November 12, 2025.
Photo credit: Joseph Krpelan

Posted by HMS in Stories
Association for Women in Mathematics at the SIAM/CAIMS 2025 Annual Meeting

Association for Women in Mathematics at the SIAM/CAIMS 2025 Annual Meeting

by Jamie Haddock & Anna Little

Introduction to the Association for Women in Mathematics (AWM)

The Association for Women in Mathematics (AWM) is a nonprofit professional society, founded in 1971, whose mission is to create a community in which women and girls can thrive in their mathematical endeavors and to promote equitable opportunity and gender-inclusivity across the mathematical sciences. The AWM has around 4500 members. Over 3000 of its members are students, many of whom belong to one of the over 130 AWM Student Chapters at their home institutions.  AWM workshops at U.S. national meetings such as the Annual meeting of the Society for Industrial and Applied Mathematics (SIAM) and the Joint Mathematics Meetings are organized by one or more of  the 26 active AWM Research Networks (AWM-RNs). AWM-RNs are intentional communities of researchers working in a common subdiscipline of the mathematical sciences in which senior mathematicians lead projects and mentor graduate student and early-career mathematicians. The program’s goal is to foster long-term collaborations and knowledge sharing, with each cohort of mathematicians helping to anchor the next in a successful mathematical career. 

AWM at the Society for Industrial and Applied Mathematics / Canadian Applied and Industrial Mathematics Annual Meeting in 2025

The Society for Industrial and Applied Mathematics (SIAM) Annual Meeting was held in conjunction with the Canadian Applied and Industrial Mathematics (CAIMS) Society in Montréal, Québec, Canada from July 28–August 1, 2025. As part of this conference, AWM hosted a series of events during the two-day AWM Workshop held July 28–29.  

The 2025 AWM Workshop was organised by the Women in the Science of Data and Mathematics (WiSDM) Research Network. Researchers in this network are broadly interested in problems motivated by working with real world data.  Topics of particular interest recently have included variational and deep learning models for image processing and computer vision, randomized iterative methods for tensor decomposition and regression problems, applications of optimal transport within biological data, and robust manifold estimation. The WiSDM Research Network has held four research collaboration workshops biannually since 2017.  

Co-organizers of this year’s AWM Workshop at SIAM/CAIMS: Jamie Haddock and Anna Little

The authors, Jamie Haddock and Anna Little, were invited to co-organize this year’s AWM Workshop after their participation in the 2023 WiSDM workshop at the Institute for Pure and Applied Mathematics (IPAM), and were excited to contribute to this important annual community-building activity.  

Picture of Jamie Haddock
Jamie Haddock

Jamie is the Iris & Howard Critchell Assistant Professor of Mathematics at Harvey Mudd College.  Her research focuses on data science, optimization, and machine learning, with particular interest in randomized iterative methods.  She is a three-time WiSDM workshop participant – she participated in 2019, was a project co-lead in 2023, and a project lead in 2025.   Additionally, she has been an active member of AWM since graduate school, organizing mentoring and research activities for early-career mathematicians, and is an active member of SIAM, including acting as secretary for the SIAM Activity Group on Data Science and sitting on the Organizing Committee for the SIAM Conference on the Mathematics of Data Science in 2024. 

Anna Little

Anna is an Assistant Professor of Mathematics at the University of Utah and her research interests include geometric and graph-based methods for high-dimensional data analysis and signal processing with group invariant features. She was a participant in both the 2017 and 2019 WiSDM events; the mentorship she received was extremely valuable in helping her establish a strong research trajectory, motivating her to serve as a research group leader at both the 2023 and 2025 WiSDM events. Together, Jamie and Anna sought to bring the collaborative and inclusive spirit of the WiSDM Research Network to the SIAM Annual Meeting.

Activities at the AWM Workshop at SIAM/CAIMS 2025

The AWM Workshop provided an opportunity for community building among participants across career stages and all research areas in applied and computational mathematics, and was comprised of several exciting events: a two-part minisymposium featuring several speakers from the 2023 WiSDM Research Workshop at IPAM, a mentoring luncheon where each student or postdoc participant met with their paired mentor, the AWM–SIAM Sonia Kovalevsky Lecture, a panel discussion with four mathematicians at a variety of career stages, and a minisymposterium in which graduate students and postdoctoral fellows presented their research and received feedback from mentor-judges.  Below, we dive more deeply into the career panel and minisymposterium to give readers a chance to experience what it was like to be at the workshop for themselves!

The career panel at the AWM Workshop was wide-ranging and candid, offering both practical strategies and personal reflections from mathematicians at different career stages. Panelists shared how they approach choosing research directions in data science, emphasizing the importance of reading survey articles broadly, engaging in interdisciplinary conversations, and being willing to pivot when a project stalls. They spoke openly about mentorship and sponsorship, noting that while careers can be built without strong mentors, cultivating a network of advisors and advocates can be transformative, especially in male-dominated spaces. On the ongoing challenge of balancing research, teaching, and service, panelists encouraged participants to practice saying “no” to requests that don’t align with their goals, to prioritize external professional activities that build networks, and to protect their time. They also addressed the stresses of uncertainty in today’s academic job market, urging students and postdocs to focus on what they can control, to build supportive networks, and to remain open to unexpected opportunities. Themes of burnout and imposter syndrome resonated strongly with the audience; panelists reminded participants to seek joy in their work, to accept that careers progress in nonlinear seasons, and to value the unique perspectives they bring to the field. The conversation concluded on an encouraging note: senior panelists underscored the responsibility and opportunity to make a difference “in the room” as one advances in a career, and urged participants to pursue problems, collaborations, and communities that inspire them.

The AWM minisymposterium for graduate students and recent Ph.D. recipients was very successful, and the room was full of exciting research.  The minisymposterium has become one of the most valuable components of the AWM Workshop, particularly for graduate students and postdoctoral researchers. For many participants, it is their first opportunity to present their work in a national forum and to receive feedback from established mathematicians outside of their home institutions. This format not only allows early-career researchers to refine their communication skills and develop confidence in sharing their results, but also fosters one-on-one conversations that often lead to collaborations, invitations to speak, or mentoring relationships. The supportive, constructive environment of the minisymposterium is especially impactful in helping young researchers see themselves as part of the broader applied mathematics community and in validating the significance of their contributions at an early stage in their careers.

The authors are deeply grateful to all who made the 2025 AWM Workshop a success. They found the workshop both energizing and inspiring and felt it was a privilege to help create a space where early-career researchers felt seen and supported, where mid-career mathematicians could share their wisdom, and where the entire AWM–SIAM community could come together.  Jamie and Anna left Montréal with new ideas and a renewed sense of the importance of intentional community building within mathematics. They encourage those interested in data science to join the Women in the Science of Data and Mathematics (WiSDM) Research Network, and hope to see many of you at the next AWM Workshop. 

Get Involved! 

AWM is a network of mathematicians who support women in the mathematical sciences, and all are welcome to join this community! To learn more about how to get involved with research groups, check out the AWM website. Don’t see your research field? Consider starting a network. Do you attend SIAM conferences and are you interested in being a mentor or poster judge? Contact the AWM SIAM Committee chair.  Social change doesn’t just happen, and neither do the programs!

Published on October 29, 2025.
Photo credit header: SIAM

Posted by HMS in Blog
Mihyun Kang

Mihyun Kang

Born in Jeju, South Korea • Studied Mathematics Education at Jeju National University in Jeju, South Korea • PhD in Mathematics from Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, South Korea  • Lives in Graz, Austria • Full Professor at Graz University of Technology (TU Graz)

In a way, becoming a Professor of Mathematics was probably always on the cards for me. Even as a child, the only subject I remember enjoying at school was mathematics and so pursuing higher education in this field felt natural.

I had both my parents’ support and encouragement to pursue this path in life. My father, a professor himself, gave me an early insight into the profession and all it entails. What I saw was mostly positive and so it was maybe no big surprise that I ended up in academia as well.

After finishing my PhD in 2001, I made my way to Berlin, Germany, to become a Postdoc at Humboldt University. Almost everything there – maths, academic culture, language, people’s attitude, as well as everyday life outside the university – was new and sometimes challenging to me, but I loved it. In this new world I could be what I was, without feeling the need to try to overly adjust myself to the standards and expectations of society.

I spent ten years in Germany, managing to progress from a postdoc to Heisenberg Fellow and then to Acting Professor at the University of Munich. I also used this time to learn the German language, which I now speak fluently. But I must say it took quite a few years to be able to teach in German, because the language of maths research is English and I taught only small Master’s courses, also in English.

Only later, when I started to teach Bachelor’s courses in German for engineering students and took part in academic administration as a Senate member of TU Graz, did I become more confident in using German in teaching and daily discussions.

I believe my approach of bridging multiple fields has contributed greatly to my career success, as it allows me to be more inventive and recognise patterns among seemingly different objects and mathematical behaviours that can only be discovered by thinking in an interdisciplinary manner.

For the past 13 years I have been a full professor at TU Graz in Austria, where I lead the Combinatorics Group. In my work, I draw inspiration from many neighbouring disciplines. My main research is centered around the phase transition phenomenon, partly because it appears in many different disciplines, including combinatorics, discrete probability, computer science, statistical physics, and network sciences. In fact, this phenomenon is almost everywhere including daily life, e.g., the change from ice to water and then to gas. 

I believe my approach of bridging multiple fields has contributed greatly to my career success, as it allows me to be more inventive and recognise patterns among seemingly different objects and mathematical behaviours that can only be discovered by thinking in an interdisciplinary manner.

Doing research in mathematics involves a lot of collaboration with mathematicians from all over the world. I greatly enjoy discussions with mathematicians from different mathematical and cultural backgrounds.

Although mathematics may appear too abstract and detached from real life to most people, everybody has been exposed to hot topics such as digital security or artificial intelligence, which, in fact, rely heavily on progress in mathematics.

In addition to being part of this international network, my participation in the SFB (Research Network) “Discrete random structures: enumeration and scaling limits” – supported by a science and research funding organization in Austria – gives me a rewarding opportunity to forge closer collaborations with mathematicians coming from top universities in Austria. This research network brings together researchers from the fields of combinatorics and probability and even touches on areas such as quantum physics.

Although mathematics may appear too abstract and detached from real life to most people, everybody has been exposed to hot topics such as digital security or artificial intelligence, which, in fact, rely heavily on progress in mathematics. I therefore strongly believe that maths is invaluable to our society and a field worth pursuing a career in.

Published on September 3, 2025.
Photo credit: TU Graz

Posted by HMS in Stories
Kateryna Marynets

Kateryna Marynets

Born in Uzhhorod, Ukraine • Birth year 1988 • Studied Applied Mathematics at Uzhhorod National University in Ukraine • Highest Degree PhD in Differential Equations from Taras Shevchenko National University of Kyiv in Ukraine • Lives in Delft, The Netherlands • Occupation Assistant Professor in Applied Mathematics at Delft Institute of Applied Mathematics, Delft University of Technology

4 countries, 5 languages, and 1 mathematics…

Was it my big dream to pursue a career as a math professor? No, it wasn’t. In fact, when our primary school teacher asked who we wanted to become in the future, I said that I wanted to be a pediatrician. But that was only because my parents are doctors, and my grandmother was leading the children’s department in the hospital at that time. To be honest, medicine has never been my thing—but as a kid, you tend to take on the role models you see around you. And I wasn’t an exception.

Many years have passed, and mathematics and languages have become inseparable parts of my life.

In Ukraine, we say that children inherit the talents of their grandparents. And with my grandparents working in the fields of physics and mathematics, following that logic, I was probably predestined for these directions. Interestingly enough, those were indeed my favorite subjects at school. I really enjoyed solving math puzzles and diving into the laws of physics. I was extremely lucky to have great teachers who recognized my interest and kept me engaged by offering challenging problems—even though my school had a linguistic focus, and the sciences didn’t occupy much of our curriculum. Many years have passed, and mathematics and languages have become inseparable parts of my life. Those seemingly different disciplines have a lot in common: languages help in sharing my mathematical expertise to a multilingual community, and logical thinking, developed through solving mathematical problems, helps in mastering a new language.

Obtaining a PhD brought new opportunities, but it also came with a lot of pressure—pressure to deliver, pressure not to disappoint.

The path to my current position was long and quite “nonlinear”—just like the math problems I work on. In my last year of high school, I seriously considered studying international economic relations, with applied mathematics as a second option. It was the study program where I could combine my passion for mathematics and foreign languages. But in the end, I chose applied mathematics, and I’ve never regretted the decision I made.

After graduation, I was offered a teaching position at my home university, which I combined with enrollment in a doctoral program. I studied boundary value problems for systems of nonlinear differential equations and developed iterative methods for approximating their solutions. It was a great combination of analysis and work with mathematical software—something I still enjoy doing. Back then, I could conduct research at my home institution but had to defend my thesis at a different university. I still remember all those trips to Kyiv, accompanied by my parents, who helped me organize everything…I am incredibly thankful for all their patience and time that they have invested.

Obtaining a PhD brought new opportunities, but it also came with a lot of pressure—pressure to deliver, pressure not to disappoint. Since then, sports has become my first aid when I feel overwhelmed and need to change my focus during the intense periods at work.

[Fractional differential] equations are broadly used in porous media modeling and systems with memory

After graduation, and having 3 languages ‘in my pocket’, I continued teaching at my home university for a couple of years but felt an urgent need for change. I seriously considered switching to industry and even received an offer from an IT company, but something held me back. Around that time, I won an individual grant for a short-term research stay in Slovakia, where I was introduced to a new field—fractional differential equations. These equations are broadly used in porous media modeling and systems with memory. Moreover, they are able to capture more complex dynamics of a physical system in comparison to their integer-order counterparts. Back then it was still a completely unfamiliar topic for me, something I had never worked on before, but it eventually became part of my current research profile.

My time in Bratislava was a period of reflection, and it gave me the motivation to continue pursuing an academic career. I saw many opportunities that European universities offered and started applying for postdocs. Among all the negative responses and unanswered emails, there was one that changed my life. I got a postdoc position in Vienna, which I still consider my biggest achievement to date. It might sound silly but moving from Uzhhorod, that is by the way famous for its Japanese cherry blossom, to join one of the oldest and most prestigious universities in Austria was something I couldn’t have even dreamed of!

Picture of a Japanese cherry blossom

During my postdoc, I explored real-world applications of differential equations by analyzing mathematical models related to ocean and atmospheric circulation

During my postdoc, I explored real-world applications of differential equations by analyzing mathematical models related to ocean and atmospheric circulation. I was fascinated by the opportunity to apply my mathematical training to real-world phenomena, expanding my knowledge beyond purely theoretical research. As time passed and my postdoc was nearing its end, I realized I needed something more permanent. And again, I stood at a crossroads: should I switch to industry and stay in Austria with my partner, or pursue a career in academia but accept the fact that I would likely have to move to a third country within the last three years? I know many couples for whom cross-country moves didn’t work out, and in the meantime I was already fluent in German and had good chances on the Austrian labor market. Luckily, my partner was incredibly supportive, and when I got an offer from TU Delft, he did everything he could to make my decision easier.

And here we are. Five and a half years after moving, I’m now a tenured assistant professor at one of the best universities in the Netherlands, developing my own research line in nonlinear (fractional) differential equations with applications in geosciences, speaking my fifth language, and making future plans with my husband. Time has sorted out everything, and despite all difficulties I feel that I am in the right place.

Of course, at the end of the day it’s all about hard work, determination and family support —but sometimes, it’s also about that one email that changes everything in your life.

Published on April 23, 2025.
Image credit: Kateryna Marynets

Posted by HMS in Stories
JoAnne Growney

JoAnne Growney

Born in rural Pennsylvania in 1940 • Studied PhD in Mathematics at University of Oklahoma, United States • Lives in United States • Occupation Taught mathematics at Bloomsburg (PA) University (now part of Commonwealth University); now retired

Before I was a math girl, I was a farm girl – the oldest of three children growing up on a farm in Pennsylvania —  the one who went to the barn with her father while her mother took care of the little ones.

Math (often numbers and counting) was an inconspicuous but central part of farming – counting eggs as I collected them from beneath the hens, counting the sheep as they came into shelter at night to make sure that none had drifted away.  Geometric quantities also were important – the volumes of harvested grains and fruit, the distances between parallel rows of corn, the gallons of milk expected from our Guernsey cow which I milked morning and evening.

My teacher, a graduate of an elite college and unashamed of her math ability, was an energetic and supportive example of “girls can do math.”

Perhaps my farm experience helped me to be good at math – and that skill seemed fine in elementary school years but as my classmates and I moved through high school my female math ability seemed to make people turn away from me.  In my senior year, I was one of only three girls in my math classes.  BUT that year I also had an inspiring experience.  My teacher, a graduate of an elite college and unashamed of her math ability, was an energetic and supportive example of “girls can do math.”

Receipt of a scholarship from Westminster College in New Wilmington, Pennsylvania, enabled me to go away from home to continue my education.  (To my dismay, at Westminster I had several “only girl in the class” experiences.)  I started out as a chemistry major but, during my sophomore year. I learned that my “science scholarship” could be used toward a math major and then (preferring math to chemistry) I switched, combining studies of math with secondary education. AND I took creative writing courses and had work published in the campus literary journal. In those days (early 1960’s), many jobs were not available to women – but teaching was.

Graduation from Westminster led to marriage, to secondary school teaching in the Philadelphia area, to evening graduate classes at Temple University – from which I obtained an MA in Mathematics.  My husband (Wallace/Wally) – who had studied physics and math and a bit of computer science – took a job at Susquehanna University in Selinsgrove, PA.  I did some part-time teaching at Susquehanna and at nearby Bucknell – but soon we moved to Norman, Oklahoma where Wally would pursue a doctorate so that he could qualify for tenure at Susquehanna. While we were in Oklahoma, with lots of time on my hands, I was able to attain a teaching assistantship and continue my studies also. 

One of the requirements for mathematics professors at Bloomsburg University was to teach “general education” courses for non-majors and this experience led me to write and publish a textbook entitled Mathematics in Daily Life – a book containing material that engaged students in mathematical reasoning related to counting, voting, travel, decision-making, and other frequent concerns. 

Graduate school brought complications to our marriage. In our earlier studies, I had gotten better grades but we credited it to his sports and fraternity activities – AND, I studied more carefully. But at The University of Oklahoma, it became evident that I was the better student and, eventually, that caused stress for both of us. I became his helper. We studied together. During our work on dissertations, I became pregnant. When our doctoral studies were completed, we returned to Pennsylvania, bringing with us a baby daughter.  I secured a tenure-track position at nearby Bloomsburg State College (now part of Commonwealth University).  AND I was able to keep my on-campus schedule to three days per week and to find excellent child care; our care-giver, Erma, was loving and dependable. Our family grew with another childbirth and two adoptions.

Keeping busy helped our marriage survive but over time we began to recognize that things weren’t working and weren’t repairable. This eventually led to divorce and to me and the kids moving to the town of Bloomsburg (and to me avoiding the 30-mile commute).  My time in Bloomsburg involved congenial colleagues, a great neighborhood – a safe place for my children even if I was not with them and walk-to schools.  When my children grew up – and left home for college and marriage and  . . . I found time to revive my childhood interest (begun as a child reading Robert Louis Stevenson’s A Child’s Garden of Verses) to poetry.

One of my favorite poems celebrates the mathematician, Amalie Emmy Noether;  it’s title is “My Dance is Mathematics”

One of the requirements for mathematics professors at Bloomsburg University was to teach “general education” courses for non-majors and this experience led me to write and publish a textbook entitled Mathematics in Daily Life – a book containing material that engaged students in mathematical reasoning related to counting, voting, travel, decision-making, and other frequent concerns.  Work on this project and — even more so — my interest in poetry drew me into connections with other colleagues (in English and Philosophy and . . . and I gradually began to participate in poetry events and publication in addition to my math-related activities.

Writing poetry was an activity that I much enjoyed – and many of my poems incorporate mathematical ideas.  One of my favorite poems celebrates the mathematician, Amalie Emmy Noether;  it’s title is “My Dance is Mathematics” and it is available online at this link:   https://joannegrowney.com/ChapbookMyDance.html ;  here is its opening stanza:

They called you der Noether, as if mathematics

was only for men.  In 1964, nearly thirty years

past your death, at last I saw you in a spotlight,

in a World’s Fair mural, “Men of Modern Mathematics.”

Once my kids were grown – and using some funds inherited from a great aunt – I began to engage in travel-related math-and-poetry activities.  Via “Teachers for Tomorrow” – a non-profit organized by one of my high school friends – I spent part of several summers teaching (math and poetry and English conversation) – in India and in Romania. 

A few years into retirement, I moved south to the Washington, DC area where three of my four children were living with their young families.  And I am still here!

More can be learned about me at my website: https://joannegrowney.com. In 2010 I began to write a blog entitled “Intersections – Poetry with Mathematics” (found at   https://poetrywithmathematics.blogspot.com/) – and, with more than 1600 posts so far, my blogging continues.  My own thought processes seem to follow the rule that “everything connects” – and this article shares some related ideas:  https://joannegrowney.com/Everything-Connects–JMA-Growney-26June2020.pdf

THANK YOU for reading!  I hope you also enjoy math and poetry and their connections!

Published on April 9, 2025.
Image credit: Diann Growney Harrity

Posted by HMS in Stories
Bindi Brook

Bindi Brook

Born in Nairobi, Kenya • Studied Mathematics at the University of Leeds • Highest Degree PhD in Applied Mathematics from the University of Leeds • Lives in the UK • Occupation Professor of Mathematical Medicine and Biology at the University of Nottingham

When I think back to school days, my sense is that I’ve always enjoyed mathematics. But there is one particular memory that is contrary to that. I was around 10 years old and had been finding most of the “maths” we did quite easy. Then some combination of factors (teacher, specific content) brought a sudden loss of confidence. I could not get my head around what we were being taught and I thought that was it – that I did not like maths anymore. My dad decided I was being silly (thankfully) and worked through some examples with me, every night, for about a week. By the end of it, my temporary lack of confidence had gone and ever since then I have really enjoyed some form of maths (here one can read – NOT pure maths). In fact, whenever I couldn’t make a decision about what I wanted to do next (at the end of A-levels, at the end of my undergraduate degree) I just picked the thing I enjoyed the most (maths and then applied maths) and went with it. I come from a South Asian culture where, if you’re considered “able”, you’re expected to study Medicine. That wasn’t for me – I really did not like remembering lots of facts and much preferred the problem-solving needed for studying maths.

(…) I have started to look into the mechanisms that could lead to a rare lung disease called lymphangioleiomyomatosis (LAM) and Long Covid.

In an interesting twist though, in my research career, I have essentially specialised in applying mathematics to biological and medical problems! My PhD was all about understanding what happens to blood flow in collapsible blood vessels like the giraffe jugular vein. In my postdoc I was investigating how to optimise ventilator settings for patients in ICU and then how to deliver inhaled therapies into the lungs. Since then, my focus has been in trying to understand how diseases like Asthma and other respiratory diseases originate and then progress. This involves incorporating biology and physics into mathematical and computational models, using approaches from different areas of applied maths. More recently I have started to look into the mechanisms that could lead to a rare lung disease called lymphangioleiomyomatosis (LAM) and Long Covid.

Although I am now a Professor and have spent much of my working life in academia, I took a somewhat torturous path getting there and could have picked a different route a number of times. Immediately after my PhD I worked for a credit card company, applying statistical models in a somewhat robotic fashion. There was no problem-solving involved and within 3 months I knew I could not stay and 3 months later started a postdoc in Sheffield. Towards the end of my postdoc I had my first daughter and worked part-time to complete it after which I decided I would just take time out to look after her. Two years later I had my second daughter.

Throughout my career, I have had some fantastic mentors (both women and men) who guided me through some tough times. These included workplace bullying and discrimination (as a woman of colour) and I have had to work hard to overcome these hurdles.

When my second daughter was around 2 years old I was starting to consider alternative careers to academia (I felt I had been out of it too long, hadn’t written up my postdoc work into peer-reviewed papers, etc) when I got a phone call from a previous academic colleague from the University of Nottingham asking if I would be interested in covering his teaching part-time, as he was taking a sabbatical. I took up this offer and continued to teach and work part-time until I felt my daughters were old enough for me to consider getting back into research. I applied for and was awarded a fantastic “return-to-research” Daphne Jackson Fellowship which allowed me to restart my research on a part-time basis and also write up some of my postdoc work. I will be eternally grateful for this opportunity, as it allowed me to start my research in asthma, build up a network of collaborators and eventually my first MRC grant. The other most important thing that made all this possible is my amazing, hugely supportive, parents who helped look after my daughters for many years.

Throughout my career, I have had some fantastic mentors (both women and men) who guided me through some tough times. These included workplace bullying and discrimination (as a woman of colour) and I have had to work hard to overcome these hurdles. Unfortunately, these things still exist. More recently (in my case) these have been more in the form of unconscious bias rather than overt. And significant efforts are being made to address these issues in my School. I try to contribute the best I can with these efforts. Nonetheless, it does mean that I regularly have to sit back and ask if it’s worth it. The answer isn’t an easy “yes”, not just for the above reasons but also because of the way higher education is going these days in terms of massive budget cuts and increased bureaucracy. On the positive side, I work with wonderful friends and colleagues, on worthwhile research problems, and great students.

Published on March 26, 2025.

Posted by HMS in Stories
Anna Ma

Anna Ma

Born in the US • Studied Mathematics at the University of California, Los Angeles • Highest Degree PhD in Computational Science from the Claremont Graduate University • Lives in the US • Occupation Assistant Professor of Mathematics at the University of California, Irvine

When I was a kid, there were lots of things I wanted to be: a lawyer, a teacher, a singer, and even, at one point, a maid (I loved organizing and cleaning as a kid, too!) The thought of being a professor, let alone a professor of mathematics, never crossed my mind. I enjoyed mathematics as a kid but wasn’t the “math wiz” in school. I simply enjoyed it. In other classes, I had to memorize all these seemingly random facts, dates, and names of cell parts and their functions. In math classes, all I needed to do was understand the underlying concept, and I would be able to solve many problems!

My first memory of just the thought of being a mathematics professor came in high school. I joined a class geared towards first-generation college students and presented a project on my dream career as a high school math teacher.

Around middle school, I decided to pursue mathematics as a career. My parents immigrated to the US as refugees during the Vietnam War and worked as nail technicians and factory workers so the only people I knew who “did math” were the math teachers I interacted with at school. Thus, I set my sights on becoming a high school math teacher. My first memory of just the thought of being a mathematics professor came in high school. I joined a class geared towards first-generation college students and presented a project on my dream career as a high school math teacher. One of my classmates turned to me after my presentation and said, “I think you’re aiming too low; I think you should be a math professor.” I told her there was no way I could ever accomplish that, and I left it at that. 

While trying to figure out what other careers existed for mathematicians, I stumbled upon Applied Mathematics and research: the wonderful world of creating new and exciting mathematics for real-world applications. [..] From there, I was hooked. 

In college, I began taking math classes beyond calculus: logic, analysis, algebra, combinatorics, and numerical analysis. Logic and Numerical Analysis were two of my favorite courses, and it occurred to me that if I were a high school math teacher, I’d never have the opportunity to “do numerical analysis” again. (Was I being a little dramatic? Yes. But did I know what I wanted? Also, yes!) While trying to figure out what other careers existed for mathematicians, I stumbled upon Applied Mathematics and research: the wonderful world of creating new and exciting mathematics for real-world applications. My first research project was to help develop an algorithm for the Los Angeles Police Department to clean reporting data automatically. Next, I worked on a project analyzing Twitter (now called X) data to categorize Tweets automatically into content-based topics that did not rely on keyword searches. From there, I was hooked. 

In college and grade school, it was difficult to see how intertwined mathematics was with the world around us. Through these projects, I began to see mathematics and the world through a new lens.  The realization that mathematical concepts and theory could directly impact and improve real-world problems is inspiring, and this shift in perspective not only enhanced my appreciation for mathematics but also fueled my passion for pursuing further research and applications that bridge theory with practice. 

In academia, you raise the next generation of mathematicians, discover and create new mathematics, and serve the scientific community and beyond.

Working in academia is an incredibly unique opportunity. In academia, you raise the next generation of mathematicians, discover and create new mathematics, and serve the scientific community and beyond. At the same time, academia can be really difficult because everyone has opinions about what you should and shouldn’t be doing and how you should and shouldn’t be spending your time. Early on, I decided I would do what made me happy. If that wasn’t enough for academia, then I wouldn’t be happy doing it anyway. There really is no other job like it in the world. Currently, I am working with multiple graduate students, recruiting new students for an undergraduate research project, writing proposals, and writing manuscripts to introduce new and improved algorithms and theorems to the mathematics community. One of the most surprising things I’ve discovered about this career is how much traveling I get to do. Every year, there is typically at least one international trip (Paris, France last year for the SIAM Applied Linear Algebra conference!) and a few domestic trips for conferences, visiting collaborators, and presenting research at other universities and research institutions. My day-to-day life in my career is never the same, which makes the work and life very exciting. 

Published on February 26, 2025.

Posted by HMS in Stories
Uzu Lim

Uzu Lim

Born in Seoul, South Korea • Birth year 1993 Studied Mathematics at Postech in South Korea • Highest Degree PhD in Mathematics from University of Oxford, UK • Lives in Oxford, UK • Currently a postdoctoral researcher in mathematics at the University of Oxford; soon to start a postdoctoral researcher position in Queen Mary University of London

I am a mathematician working on geometric data analysis, and I am a transgender woman. The interaction of mathematics and gender in my life is non-trivial, and I thought seriously about this for the first time while writing this piece. While my gender identity slowly crystallised over my life, it was only 4 years ago that I declared myself as transgender. Mathematics has been at the centre of my life for a long time, and I mostly regarded it as a genderless activity. However, I’ve recently started recognising the effects of male socialisation in my mathematical practice, and started exploring how my femininity could interact with my mathematical practice.

In the end I got a PhD in mathematics in Oxford, but the voices whispering “I am not enough” never stopped.

I grew up in a fairly typical “Asian male math nerd” culture, although it was one of those turbo-charged versions appearing in science high schools and Olympiads. Born in South Korea, I went to an international boarding school when I was 13, and moved alone to Singapore when I was 15 to attend a prestigious science high school. That was not enough for me, because I constantly complained that this school wasn’t teaching me enough advanced mathematics. In the end I got a PhD in mathematics in Oxford, but the voices whispering “I am not enough” never stopped. I attribute this to the nerd-machismo in male STEM culture, coupled with the distinct Asian workaholism. I could not settle for anything that may actually give comfort and nurture, for once.

With the help of my transgender boyfriend, I reflect that it’s time to stop and look back. I have done enough to show that I am worthy of love. It doesn’t have to be a constant screaming and scaling a higher mountain. I look back at my love of shapes and structures, and I look back at the delicate theorems and programs I sculpted over the course of my mathematical life. I say: I love all of you, and I will care for all of you, because you are a dear part of me. And I do this with a form of feminine, motherly love.

(…) I sense a harsh masculinity in how many scholars think of mathematics.

The heart and soul of mathematics lie in the expanse of the fluid framework of ideas created by people. Important theories are supported by soft intuitions, and the network of deep thinkers brings gradual yet certain progress to mathematics. I sense much femininity in this smoothness of ideas. On the contrary, I sense a harsh masculinity in how many scholars think of mathematics. While learning pure mathematics, there was a persistent self-loathing along the lines of: “You will never dream of staying in academia if you can’t even finish Hartshorne’s Algebraic Geometry.” There’s always a higher tower to climb, and a grander theorem to learn. It reminds me of phallic architectures that trace the city skylines. Mathematics is also often made into a sterilised toolbox that is wiped clean of blood and sweat in the creative process. I performed this sterilisation in writing my doctoral thesis, where the anxiety and obsession in my contrarian approach to geometric data analysis were sanitised before I presented them cleanly in theorems and algorithms. This is good in some sense, but there is a lingering unexplored emotional dimension that could have been shared more deeply with other mathematicians.

So here onwards, I dream of cultivating a more feminine mathematical culture. Partly, that means to be honest with all sorts of emotions that arise from mathematical practice. Even though I see mathematics itself as a genderless activity, the gendered culture brought by mathematicians is real. I dream that mathematicians will someday open up more of our human, emotional elements into research papers and talks. To play my part, I will start to look deeply into my colleagues’ mathematical practices to share our woes, obsessions, hopes and dreams. As I rise higher in the rank, I will have more chances to usher in the strength in emotional openness in supervision, papers, and seminars. Someday we will be climbing the celestial mountains of abstraction as a team, not in the misguided spirit of nerd machismo, but rather in the spirit of nurturing yet powerful femininity.

Published on September 18, 2024.

Posted by HMS in Stories
Mónica D. Morales-Hernández

Mónica D. Morales-Hernández

Born in Nuevo Leon, Mexico • Birth year 1989 Studied Applied Mathematics at UAA in Mexico • Highest Degree Master of Science in Mathematical Sciences from Clemson University, USA • Lives in New York, USA • Occupation Assistant Teaching Professor

I am an applied mathematician and educator now, but that wasn’t my initial goal. I originally aspired to be a physicist. Since my university didn’t have a physics major, I decided to pursue mathematics instead.

The field [of computational mathematics] is dominated by white male mathematicians, which means female faculty and underrepresented groups often face sexism and discrimination.

While pursuing my undergraduate and graduate studies in Mexico, I had the chance to do research using numerical methods to model bacterial growth. During my time at Clemson University, working on my Master’s degree in Computational Mathematics, I had the chance to dive into some fascinating projects. One of the highlights was working with something called the Leray alpha model, which is a regularization of the Navier-Stokes equations that has shown effectiveness in numerical simulations of turbulent and complex flows. Working on this project holds a special meaning for me. It was not only the first research project I worked on in the United States, but it also involved a type of mathematics (Finite Element Method) that I had not had access to in Mexico, and it was a physics problem, which fulfilled my dream of becoming a physicist.

Computational mathematics is not easily accessible to everyone. The field is dominated by white male mathematicians, which means female faculty and underrepresented groups often face sexism and discrimination. Additionally, it is an expensive field, with the cost of software, books, and conferences creating barriers for people trying to access this knowledge.

(…) My students have used their knowledge to model the oil spill in the Gulf of Mexico, analyze income inequality in New York City using the Gini coefficient, and determine appropriate drug dosages (…).

Due to these challenges, I have been advocating for greater access to information and knowledge. As an educator, I truly believe that mathematics is a skill that can be developed if you practice and are given the correct resources. This belief has guided my approach to teaching, where I’ve made a conscious effort to integrate practical applications and research components into traditional coursework. In courses like Calculus 2 and Linear Algebra, I have incorporated a research component where students tackle real-life problems, with a special emphasis on social justice issues. This innovative approach allows students to apply mathematical techniques learned in class and numerical methods to address significant societal challenges.

For instance, my students have used their knowledge to model the oil spill in the Gulf of Mexico, analyze income inequality in New York City using the Gini coefficient, and determine appropriate drug dosages, among other projects. These projects not only deepen their understanding of mathematical concepts but also highlight how mathematics can be a powerful tool for analyzing and solving real-world problems. By exploring the intersection of social justice and mathematics, students gain a broader perspective on how their skills can contribute to meaningful change in society.

The [EvenQuads card] decks pay tribute to notable women mathematicians and can be used to play various mathematical games.

As a woman of color, sexism and racism have been a challenging part of my academic journey. These experiences have motivated me to work towards making the math world a better place for women and other minorities. My passion for this cause led me to volunteer at the Association for Women in Mathematics, where I strive to create a more inclusive environment for underrepresented groups. I am a member of the EvenQuads Committee and currently serve as the Chair of the Student Chapters Committee. The EvenQuads card decks is a project created to celebrate the 50th anniversary of the Association for Women in Mathematics. The decks pay tribute to notable women mathematicians and can be used to play various mathematical games. These cards acknowledge the significant, yet frequently overlooked, contributions of women to mathematics in research, education, and industry.

Through these combined efforts in my research, teaching and advocacy, my goal is to ensure that the field of mathematics is accessible and welcoming to everyone, regardless of their background.

Published on September 4, 2024.

Posted by HMS in Stories