Month: March 2025

Bindi Brook

Bindi Brook

Born in Nairobi, Kenya • Studied Mathematics at the University of Leeds • Highest Degree PhD in Applied Mathematics from the University of Leeds • Lives in the UK • Occupation Professor of Mathematical Medicine and Biology at the University of Nottingham

When I think back to school days, my sense is that I’ve always enjoyed mathematics. But there is one particular memory that is contrary to that. I was around 10 years old and had been finding most of the “maths” we did quite easy. Then some combination of factors (teacher, specific content) brought a sudden loss of confidence. I could not get my head around what we were being taught and I thought that was it – that I did not like maths anymore. My dad decided I was being silly (thankfully) and worked through some examples with me, every night, for about a week. By the end of it, my temporary lack of confidence had gone and ever since then I have really enjoyed some form of maths (here one can read – NOT pure maths). In fact, whenever I couldn’t make a decision about what I wanted to do next (at the end of A-levels, at the end of my undergraduate degree) I just picked the thing I enjoyed the most (maths and then applied maths) and went with it. I come from a South Asian culture where, if you’re considered “able”, you’re expected to study Medicine. That wasn’t for me – I really did not like remembering lots of facts and much preferred the problem-solving needed for studying maths.

(…) I have started to look into the mechanisms that could lead to a rare lung disease called lymphangioleiomyomatosis (LAM) and Long Covid.

In an interesting twist though, in my research career, I have essentially specialised in applying mathematics to biological and medical problems! My PhD was all about understanding what happens to blood flow in collapsible blood vessels like the giraffe jugular vein. In my postdoc I was investigating how to optimise ventilator settings for patients in ICU and then how to deliver inhaled therapies into the lungs. Since then, my focus has been in trying to understand how diseases like Asthma and other respiratory diseases originate and then progress. This involves incorporating biology and physics into mathematical and computational models, using approaches from different areas of applied maths. More recently I have started to look into the mechanisms that could lead to a rare lung disease called lymphangioleiomyomatosis (LAM) and Long Covid.

Although I am now a Professor and have spent much of my working life in academia, I took a somewhat torturous path getting there and could have picked a different route a number of times. Immediately after my PhD I worked for a credit card company, applying statistical models in a somewhat robotic fashion. There was no problem-solving involved and within 3 months I knew I could not stay and 3 months later started a postdoc in Sheffield. Towards the end of my postdoc I had my first daughter and worked part-time to complete it after which I decided I would just take time out to look after her. Two years later I had my second daughter.

Throughout my career, I have had some fantastic mentors (both women and men) who guided me through some tough times. These included workplace bullying and discrimination (as a woman of colour) and I have had to work hard to overcome these hurdles.

When my second daughter was around 2 years old I was starting to consider alternative careers to academia (I felt I had been out of it too long, hadn’t written up my postdoc work into peer-reviewed papers, etc) when I got a phone call from a previous academic colleague from the University of Nottingham asking if I would be interested in covering his teaching part-time, as he was taking a sabbatical. I took up this offer and continued to teach and work part-time until I felt my daughters were old enough for me to consider getting back into research. I applied for and was awarded a fantastic “return-to-research” Daphne Jackson Fellowship which allowed me to restart my research on a part-time basis and also write up some of my postdoc work. I will be eternally grateful for this opportunity, as it allowed me to start my research in asthma, build up a network of collaborators and eventually my first MRC grant. The other most important thing that made all this possible is my amazing, hugely supportive, parents who helped look after my daughters for many years.

Throughout my career, I have had some fantastic mentors (both women and men) who guided me through some tough times. These included workplace bullying and discrimination (as a woman of colour) and I have had to work hard to overcome these hurdles. Unfortunately, these things still exist. More recently (in my case) these have been more in the form of unconscious bias rather than overt. And significant efforts are being made to address these issues in my School. I try to contribute the best I can with these efforts. Nonetheless, it does mean that I regularly have to sit back and ask if it’s worth it. The answer isn’t an easy “yes”, not just for the above reasons but also because of the way higher education is going these days in terms of massive budget cuts and increased bureaucracy. On the positive side, I work with wonderful friends and colleagues, on worthwhile research problems, and great students.

Posted by HMS in Stories
Catherine Micek

Catherine Micek

Born in United States • Studied PhD in Mathematics at University of Minnesota in Minneapolis, United States • Lives in United States • Occupation Data Scientist

Galileo Galilei said “Mathematics is the language with which God has written the universe.” I chose to have a career in mathematics because I wanted to be a “translator” for the language of mathematics. 

The first time I realized that I might enjoy teaching math was when I was in sixth grade.  I was writing up a solution to a pre-algebra problem for a school newspaper article, and I discovered that I loved breaking the problem down into smaller steps that could each be carefully explained. Communicating a logical and precise solution was beautiful to me.

When I went to college, choosing a major was tough because I was curious about many subjects. What drew me towards math during my freshman year was the idea of becoming a college math professor. A career as a math professor would allow me to combine the challenge of solving math problems as well as communicating the results.  Furthermore, the fact that mathematics could be applied to a variety of fields appealed to my widespread curiosity. During college, I studied applications of math to some familiar and loved subjects (such as music) as well as some new and interesting ones (such as computer science). I majored in math and minored in physics and computer science with the goal of pursuing a Ph.D. in applied mathematics upon graduation.

Graduate school was very different from my undergraduate studies. The coursework was more demanding, so I had to improve my study habits, and research required that I develop an entirely new set of skills. The nature of research was very different from the syllabus structure of problem sets and exams in a course. Since my goal was to solve a problem no one had ever solved before, it required a creative and flexible approach, one that emphasized the exploration, experimentation, and steady refinement of ideas.  But perhaps the most important lesson I learned was that there is no single “correct” way to be a mathematician. I saw that fellow students succeeded by developing a process of learning and research that worked for their unique set of talents and interests. I, too, had to develop such a process, even though it was an arduous and intimidating journey, fraught with a lot of trial and error. Ultimately, though, the effort was worth it because it built my self-confidence.

Since my goal was to solve a problem no one had ever solved before, it required a creative and flexible approach, one that emphasized the exploration, experimentation, and steady refinement of ideas.  But perhaps the most important lesson I learned was that there is no single “correct” way to be a mathematician.

At the end of graduate school, I had an unforeseen change of plans. My goal had always been to get a tenure-track job (which is the career track to a permanent academic position in America) at a local school. However, since no local positions were open the year I was graduating, I had to consider the trade-offs between my geographic location and the type of job I wanted. If I didn’t relocate, I would have to broaden my job search to include non-academic jobs (which I didn’t know much about) and temporary academic jobs (which had more uncertainty). It was scary to consider changing my long-held career plans, but I had an established support system of family and friends locally who were an important part of my life. After extensive deliberation, I accepted a two-year faculty position at a local school and began investigating non-academic career paths.  

Luckily for me, jobs in data science were starting to surge around the time I started looking at industrial jobs. Companies were looking to hire employees who understood complex statistical and machine learning algorithms and could write computer code.  Data science was a great fit for my interests and skills – I had a lot of programming experience and was willing to learn whatever additional mathematics I needed for a job – so I began looking for jobs where I could use and further develop my technical skills.  

My first industry job was building statistical models for pricing policies at an insurance company, and from there I segued into data scientist and software developer roles. Although the domains are different and the mathematical techniques I use vary, my jobs generally have consisted of formulating the mathematical problem, writing the code to train the model and implementing the solution, and explaining the results to business stakeholders. I’ve worked as a data scientist at several companies on problems with diverse applications: energy, finance, supply chain, manufacturing, and media.   Although the details of my professional life are different than if I was a math professor – the work is interdisciplinary and team-oriented – I still get to be a “translator” of mathematics. 

Even though my career path has gone differently than I originally planned, I am happy with the unexpected directions it has taken me. Keep in mind that the best career path is not about what the majority is doing or what others advise that you “should” do: it is the path you create for yourself.

Published on March 12, 2025.

Photo credit: Catherine Micek

Posted by HMS in Stories