HMS

Natasha Karp

Natasha Karp

Born in United Kingdom • Birth year 1974 • Studied Biochemistry at Warwick University in United Kingdom • Highest Degree PhD in Chemistry from University of London • Lives in Cambridge, United Kingdom • Occupation Director Biostatistics at AstraZeneca

I really struggled at school in the early years, particularly with reading and writing; but then when I was around 12, it started to make sense. I was formally diagnosed as being dyslexic when I went to university, I guess when I was 12  things clicked into place as I found my strategies to get round my dyslexia. Those early years of struggling and being in bottom sets has left me with feelings of doubt but also a drive to prove people wrong. At 16, I selected mathematics with statistics, biology and chemistry as my specialist subjects and got the highest grades possible. I really enjoyed statistics and mathematics, and used to do extra work for fun. However, it was taught as a theoretical subject and I had no sense of what you could do with it. I also had no role models; I am the only person in my family to graduate from university. If you were a clever woman, you became a teacher or a doctor. Being a doctor didn’t appeal, so teaching became the ambition and I decided to study biochemistry with a year in industry at Warwick University and graduated with a first-class degree.

After I conducted some experiments, I felt the mathematical techniques used to make decisions were poor. Consequently, I started studying statistics (…).

I really enjoyed my year in industry, where I learnt the fundamentals of research, but after years of conditioning that my path was to be a teacher, I then trained as a secondary school teacher. After a couple of years teaching, I realised that I didn’t feel satisfied intellectually. I was working hard but didn’t feel I was growing. I decided to return to science and was offered a role back with the industrial placement company who sponsored me to complete a PhD in partnership with Imperial College, London. Unfortunately, the company folded but I just managed to complete my PhD. My confidence as a scientist felt low, I felt I had snuck in my PhD and I decided to work in academia to prove myself and joined the Cambridge Centre for Proteomics as a post-doc. I was very lucky and given a lot of freedom. After I conducted some experiments, I felt the mathematical techniques used to make decisions were poor. Consequently, I started studying statistics and writing papers exploring experimental design and data analysis for proteomic experiments. I was flying high and had 12 publications but then my first son was born and he was very poorly and I had to prioritise the family. I found a part-time job as a biostatistician with the Wellcome Trust Sanger Institute supporting in vivo research. It felt like I was starting again but I could meet my family needs and keep working. Over time, my son got better. The new environment gave me new opportunities; for example, I spent some time with database experts who helped me learn to code. I started publishing again in data analysis and experimental design for in vivo research. There wasn’t permanent funding in academia for this type of role so I applied to AstraZeneca, who had just relocated to Cambridge, as a statistician.  

I feel my dyslexia is a strength, as it helps me see the bigger picture, connect ideas and be a better manager.

What am I doing now? I now lead a team of statisticians for AstraZeneca supporting preclinical research. I still work part-time (80%) to meet my family commitments. The work is very varied and we have the opportunity to make a big impact. We jump into projects, assist the scientists, enable their research and then jump to the next project. I find it surreal that I, a self-taught statistician, lead these amazing statisticians. I feel my dyslexia is a strength as it helps me see the bigger picture, connect ideas and be a better manager. As a dyslexic woman who has an unusual career path I bring diversity to the leadership element of my role. I also give lectures around the world on my research topics of interest and get the opportunity to work outside of AstraZeneca on working groups exploring topics such as sex bias or reproducibility. I love my job. It is applied statistics having impact.

As an individual with imposter syndrome, you have to recognise your voice of doubt but not let it control you.

My career path has had many twists and turns. That is real life. There are benefits, I have more experience to draw upon. I feel my journey shows there isn’t one path that is right for you. You should be open to opportunities and change. Change is positive. You do have to be prepared to take risks. As an individual with imposter syndrome, you have to recognise your voice of doubt but not let it control you. From the perspective of maths, data is everywhere, being good with data is such a strength. You don’t have to be a theoretical expert to add value and have impact. Enjoy your journey but don’t expect to know exactly where you are going and keep growing and challenging yourself.

Posted by HMS in Stories
María Eugenia Cejas

María Eugenia Cejas

Born in La Plata, Buenos Aires, Argentina • Birth year 1988 • Studied Mathematics at Universidad Nacional de La Plata, Argentina • Highest Degree PhD in Mathematics • Lives in La Plata, Argentina • Occupation Professor of Mathematics at the Universidad Nacional de La Plata and image consultant

About the end of high school time I noticed that I wanted to study something that was not common. I started to read some books of math (dissemination books, not formal books) and I discovered that I enjoyed very much how math could be applied to solve different problems. Consequently, I decided to study math at university.

During my university degree I did not encounter any big problems, I just realized that math is really different from what one expects after high school, it can be extremely abstract. The only thing I did during my university time was study to get the degree in time. I was very focused and dedicated to this subject. After graduation I started my PhD, I felt that I wanted to do that, but I also missed having the time to think about and explore other options. I let myself get carried away because it seemed like the next sensible step to take. I chose Harmonic Analysis as my field of research which is an area of pure math and even after studying this subject for more than 8 years, I cannot give you a direct application of it in real life.

I started to feel in crisis with my career, so I decided to study to be an image consultant and fashion producer. Now I am working in the fashion industry while at the same time I do research and teaching.

Two years after finishing my PhD the lack of applications started to bother me, I did not find that my work was helping anybody. It is like you are 10 years of your life studying a lot, following the crowd and you do not stop to think if this is what you want for your entire life. I started to feel in crisis with my career, so I decided to study to be an image consultant and fashion producer. Now I am working in the fashion industry while at the same time I do research and teaching. I am trying to reconcile myself with the mathematical part of my life, right now teaching and research have become my routine, a way to pay my bills, while fashion is my passion. I am leading a double life: I am a professor in mathematics during the day and an image consultant during the weekend and after 7pm during the week. Currently, I prefer to work as an image consultant because it gives me well-being, gratitude and satisfaction, and the opportunity to help others to feel better and more self-confident. In fashion I find usefulness that I do not find in my research field but as of now this is limited to my free time.

During my academic career I encountered some problems: I remember when I started to attend conferences, mainly in Europe, I felt that some “important men” in my area of research were looking down on me. I do not know if it was because I am a woman or because I am from a developing country. Looking back I remember giving presentations in many conferences and these colleagues did not pay any attention while I was lecturing. This type of situations made me feel excluded from the system. Mathematics is a field where there is a lot of competition but I believe that nowadays women are having prominence. Luckily, now there are gender commissions that discuss the problems women face in science and how these can be solved.

If I would have to give an advice I would suggest taking some time to think before making any big decision for the future. Stop to think if this is what you want, if this is your passion.

Summarizing my experience as a researcher I can say that on the one hand, this career gave me a lot of professional growth, made me feel sometimes empowered (mainly when I could prove that theorem that I conjectured), and actually is a crucial part of the woman I am. On the other hand, the job market in my country is frustrating, even before COVID-19 there was already a big financial crisis and there are not a lot of positions for researchers, especially for mathematicians.  Thus, pursuing a career in academia means to wait until you are 40 years old before finally getting a permanent position and a steady life. If I would have to give an advice I would suggest taking some time to think before making any big decision for the future. Stop to think if this is what you want, if this is your passion. Obstacles don’t matter, keep your chin up and go for it!  Maybe my story is not the ideal one, where everything is perfect and linear, but that’s life!

Posted by HMS in Stories
Paola Console

Paola Console

Born in Taranto, Italy • Birth year 1983 • Studied Mathematics at Università del Salento in Lecce, Italy – PhD at Université de Genève • Highest Degree PhD in Mathematics • Lives in Rome, Italy • Occupation Data Scientist at Enel

I was never good at math until high school. When I was a child, I loved spending my time reading and writing rhyming poems, so everyone in my family was sure my path would have had something to do with liberal arts. For this reason, they were really surprised (and probably worried) to hear I decided to start scientific studies in high school: for me it was a challenge, but I thought that by doing this I would have had a more complete education. There, I met a teacher who changed my life by starting to show math to me as a sequence of logical steps. I began finding it funny, logical, and telling everybody that to me, doing math exercises was comparable to playing crosswords.

After high school, it was logical for me to then start my studies in math in academia, with the idea to become a teacher. But in the end, I decided to complete my studies with a PhD in numerical analysis in Geneva, where I could also study different languages and meet people with different stories and backgrounds.

I really missed my country, my habits, my family, my friends, and therefore coming back home was a fundamental step to being happy in my life.

All the experiences I had while pursuing my PhD made me realize that I loved studying math, but that I prefer to apply it rather than develop new methods and proofs and, furthermore, that living in Italy was fundamental to me: I really missed my country, my habits, my family, my friends, and therefore coming back home was a fundamental step to being happy in life. I then decided to accept a postdoc position in neuroscience in Rome. I loved this job, but it was always meant to be a smooth transition towards the corporate world, where I would start to apply what I love to something more concrete by learning about machine learning and data science.

This experience helped me greatly in landing my current job, about six months after the end of my postdoc. I now work as a data scientist at Enel, one of the biggest private renewable energy companies in the world, in a huge group of data scientists that supports all the businesses and internal service functions, like procurement, in the company. My first projects consisted in applying machine learning techniques to detect faults in power plants, and I was very happy to finally see a real-world application for all my studies. Then I started to develop algorithms for the procurement field and now my main activity is undertaking a huge initiative to forecast the company’s income statement to support management decisions.

For all these reasons, when I think about my path, I am very happy about it, because it seems like I could, in the end, integrate all the different souls I had in my life (…)

What I really love about my current job is that it is based on applying math to the real world, but it is also really focused on relationships. Besides the modeling activities we carry out, I am also coordinating a small group of colleagues and I am involved in many other activities to spread data culture throughout the company with education and communication projects. One of the projects I am most proud of is the creation and the organization of an upskilling program called “Data School”, in which my team provides courses on topics related to data to colleagues of all areas. I think that engaging with people on topics related to data is a fundamental step to collaborate with them and support the data-driven transformation that is the main mission of my team. 

For all these reasons, when I think about my path, I am very happy about it, because it seems like I could, in the end, integrate all the different souls I had in my life: the little girl writing poems, the student that wanted to be a teacher, and the rigorous mathematician.

Posted by HMS in Stories
Clara Stegehuis

Clara Stegehuis

Born in Amersfoort, The Netherlands • Birth year 1991 • Studied Applied Mathematics at Twente University in Enschede, The Netherlands • Highest Degree PhD in Mathematics • Lives in Enschede, The Netherlands • Occupation Assistant Professor

I always liked solving puzzles when I was younger. My dad even made me eat my bread in puzzle-fashion: he cut it into 4×3 squares, and I had to eat them with chess knight’s jumps, and make sure I did not get ‘stuck’ while eating my entire slice of bread. In high school, however, I liked many subjects, so the choice for mathematics was not obvious at all. I thought about studying biology, physics or maybe something more related to medical sciences. But in the end, I chose mathematics, as I thought this would leave my options open later on.

(…) I am now investigating the mathematics behind spreading processes on networks. These have very important applications in the spreading of epidemics, but are also applicable to viral messages on social media.

Even though my choice for mathematics was rather random, it turned out to suit me very well. I really enjoyed solving exercises, and I also appreciated the fact that the same piece of mathematics can often be applied in so many different contexts. For example, I am now investigating the mathematics behind spreading processes on networks. These have very important applications in the spreading of epidemics, but are also applicable to viral messages on social media.

Because I liked my studies so much, I decided to stay at the university. I first did 4 years of PhD research. During my PhD research, I found doing research a bit lonely, which made me doubt whether I would like to continue on this path. So after those four years, I still did not really know whether I would keep on working at a university, or whether I would go and work for a company instead. But when I got offered a job at Twente University as a researcher, I decided to take it, and see whether I would like it. And I am happy to say that now that I do not have to do my own PhD research, I can make my work more collaborative, which I enjoy very much.

I really enjoy sharing my passion for mathematics with others who maybe never got to see mathematics as useful or beautiful

What I like about my job is that it is very versatile. I can do research, which is basically like solving my own puzzles. On other days I teach more, and have interaction with students, which is also very motivating. Besides that, I participate in a lot of outreach activities. That means that I go to high schools and primary schools to talk about mathematics, but also to theaters, science festivals and podcasts. I really enjoy sharing my passion for mathematics with others who maybe never got to see mathematics as useful or beautiful. In high school I never knew that there was so much more to mathematics than quadratic equations, so I like to share that with as many people as possible!

For example, I wrote blogs about how mathematics helps to predict who will win the soccer world championship, but also about using mathematical graph theory to find the most influential musician. I think that depending on your specific interests and hobbies, there is always an application of mathematics that will appeal to you! So in my outreach activities, I always try to think about what the specific audience could find interesting, and then I will show them an application of mathematics that involves this. The great thing about mathematics is that it is so broad that it is always possible to do so. Of course, this involves a lot of work from my side, but I keep on learning from this as well, and it is very rewarding.

Posted by HMS in Stories
A Feminist Rant

A Feminist Rant

Or a Plea for Change

by Joana Sarah Grah

Do you still come across the common stereotypes against mathematicians in general and women mathematicians specifically? Maths is boring, maths is for loners, maths is unsexy (and done by unsexy people – I just stumbled upon this again recently when reading a quote-retweet by Hannah Fry replying to someone who claimed there are no “hot” people that are good at maths – just for the record, I know quite a few), maths is dry and above all – maths is for men!

I don’t know about you but I’m so tired of it. When did we exactly start to think that being good at a subject at school is something to be made fun of or to be ashamed of? I have heard this so many times: “Oh, I’ve always hated maths.”, “Only geeks and losers like maths.”, “I always sucked at maths.”.  But in a – you know – kind of proud way? What’s wrong? Do you like not being able to calculate the appropriate tip when you’re eating out? Do you enjoy not understanding probabilities, hence not being able to evaluate risks for instance? Did you never see the exponential growth of infections during the pandemic – which has always been exponential in the first place – coming? It’s always easier to deny things we don’t understand but are afraid of. In the current situation this is particularly dangerous and even probably harmful for others. Nothing to be proud of if you ask me.

A solid foundational education in mathematics is essential, no doubt. But maths is so much more than being good at calculating stuff. In fact, I couldn’t name any area of application where maths doesn’t play a role. Natural sciences like physics, chemistry and biology, earth sciences, astronomy, medicine, economics, arts restoration – those are just some examples that come immediately to mind. The variety of mathematical fields and the respective methods is similarly vast – there’s so much to explore and really something to be passionate about for everyone. In addition, maths is absolutely no discipline where teamwork isn’t encouraged. In fact, you discuss and brainstorm with colleagues day-to-day (although there are exceptions of course). Interdisciplinarity is key to most problems and projects arising in applied maths.

Now let’s get to the point that bothers me the most and that is the reason we set up this webpage. Unfortunately, it’s still a common misperception that maths is not for women. Pretty pathetic given that we’re living in 2021 you ask? Yes, absolutely, but it turns out we’re still living in a patriarchy. That is why we need to be feminists. 

At the beginning of your studies, you probably won’t realise the disproportion between women and men in maths. You’ll notice that you have very few or even no women professors. Most of the academic staff is likely to be men. The gap becomes more obvious the further you get. Finding women working in the same field at conferences is probably much more difficult than finding men. Seeing women on discussion panels and giving talks will be the exception rather than the norm. It is getting a bit better though and many people are aware of the problem and encourage diversity. Yet the majority of women seem to decide at some point of their academic career that they don’t want to pursue it further. Why is that? Anti-feminists, mostly men, often claim that it’s their personal choice to leave because they prefer a part-time job, a job in a less competitive environment, a job that fits their “abilities” and “interests” more, because they want to have a family and won’t be able to have children and an academic career. Nothing wrong about any of this but the crucial point is having the choice. It is indeed possible to both have a family and a professorship. And it is indeed possible to be a professor while still prioritising your leisure time, your mental health, your family, your friends. Not all women are given those opportunities. Most women don’t have the choice. It is a structural problem, an institutional problem, a societal problem. Maybe you missed the important discussions because you left an informal meeting after a conference day, as you were the only woman and felt uncomfortable, or because you didn’t have childcare for the whole night. Maybe you risk a huge fight with your family, or even ending the contact altogether, or you lose a relationship, because you’re spending too much time writing grants (instead of attending family events, going on your long-planned vacation or caring for your kids – or having kids). Maybe all the people in power making decisions are men and they like to surround themselves with like-minded men.

We need to make women in maths visible for the next generation who are desperately searching for role models because they don’t see them. We need to amplify the voices of women in maths because oftentimes the voices of men in maths are much louder. We need to showcase the variety and – more often than not – non-linearity of career paths including failures, doubts, setbacks, maybe starting all over again, maybe changing fields completely, maybe having children. We need to raise awareness for the lack of resources in schools and universities to highlight women in mathematics, for the fact that mental health is actually physical health and just as important as making sure you stay up-to-date with the literature and back up your work regularly. We need to normalise not working crazy hours on a regular basis, having a family, not having a family, admitting that you don’t know something, asking “stupid” questions (I know it’s stale but there really are no stupid questions, most of the time those are the important questions to ask) and having interests that have nothing to do with maths.

Why do I write this now rather than at the time when we launched our page at the beginning of the year? Because I was afraid I would sound too aggressive, I would probably exaggerate things and because I’m sharing very private opinions and experiences. On the other hand, it was about time. I reflected a lot about this recently and realised how much of it I suppressed or dismissed as innocuous. What really fuelled my anger was when I saw injustices happening to other women, to friends, to the next generation. Most of the time they seem subtle but they do impact your day-to-day work life significantly. I experienced women suffering from imposter syndrome that came across so strong and confident yet still being at the mercy of the broken system and socially acceptable misogyny. Besides the structural problem, there is the everyday sexism all of us are familiar with. Do you find it hard to literally be heard in a discussion? Do you have to raise your voice a bit extra? I certainly had to sometimes. Another classic is when a man paraphrases something you just said and gets all the praise for it. Is this something we just have to cope with? What about strangers at conferences asking you out for dinner during a poster presentation? Uncomfortable to say the least. Something we have to  bear? I have once been told that I should apply for a professorship simply because I’m a woman and these days it’s super easy for women to get a position, basically everyone is accepted. I don’t think that’s acceptable and I wish I had been more assertive in this situation.

I don’t want to close on a negative note though. Thankfully, I had so many more positive encounters during the past years in academia than negative ones. Men and women who were genuinely interested in discussing research, appreciated my advise, gave me very valuable advice, motivated people – especially women – who were struggling and doubting themselves, facilitated socialising and networking at academic events, showed their own vulnerability and insecurities, shared their failures and how they overcame hurdles, educated themselves and were feminists. Let’s take them as an example.

Let’s try to be a bit more understanding, a bit more empathetic and a bit more supportive in this already stressful, fast-paced, competitive environment that academia mostly is. Let’s speak out clearly if we witness any kind of bullying, sexism and harassment. Of course things have to change on a much bigger scale and first and foremost systemically. But every one of us can make a difference – no matter how small – so let’s start today!

Posted by HMS in Blog, 0 comments
Marianne Freiberger

Marianne Freiberger

Born in Münster, Germany • Birth year 1972 • Studied Pure Mathematics at Queen Mary, University of London • Highest Degree PhD in Mathematics from Queen Mary, University of London • Lives in London, UK • Occupation Editor of Plus magazine (http://plus.maths.org)

I first became interested in maths when I learnt about the epsilon/delta definition of a limit at school. The fact that something as intuitive as a limit could be expressed so precisely in symbols blew my mind. Despite that interest, I didn’t really plan on studying maths at university. The reason I did was that I had moved to the UK from Germany after school and, when I finally decided to do a degree, thought my English wasn’t up to studying a more wordy subject (which is ironic given that I am now a writer).

I enjoyed my BSc, but by the end of it still didn’t think that maths would be part of my future. I spent a year working in all sorts of jobs and travelling, until a book by Ian Stewart re-ignited my passion. I applied for a PhD place with Shaun Bullett at Queen Mary, University of London, where I spent the next few years studying and researching holomorphic dynamics (which involves things like Julia sets and the Mandelbrot set). Shaun was a great supervisor who safely got me through my PhD (can’t have been easy!) and enabled me to stay on for another three years as a postdoc.

Because I’d been interested in science communication for a while, I applied for a maternity cover job at Plus magazine

Finding the next postdoc proved tricky and my heart wasn’t really in it. I didn’t want my life to revolve around my job, which as a postdoc is something you usually have to accept, and wasn’t sure I was a good enough mathematician. (Whether the latter was true or just down to lacking confidence — a notoriously female affliction— I still don’t know.) But it all turned out for the best: because I’d been interested in science communication for a while, I applied for a maternity cover job at Plus magazine. That was in 2005 and I am still at Plus now, co-editing along with my good friend and colleague Rachel Thomas.

Plus is a free online magazine about all aspects of maths, aimed at a general audience. It’s part of the Millennium Mathematics Project based at the University of Cambridge. My job there involves writing articles, producing podcasts and videos, and editing other people’s submissions. We cover anything from abstract algebra to astronomy, and theoretical physics to the science of sport. 

(…) Once you have an explanation of something in very simple terms, you’ve done some of the hardest part of the work that’s needed to explain it accessibly to others

Starting at Plus was quite a gear change initially. My command of English no longer felt like such an obstacle, but I had no journalistic or writing training. I did a couple of writing courses offered by Cambridge University, but all the really important stuff I learnt on the job from the two brilliant writers and editors then working on Plus, Rachel Thomas and Helen Joyce, and by example from my boss, the amazing John D. Barrow (who sadly died last year).

Ironically, my ignorance also helped me with my writing, I think. I knew almost nothing about most areas of maths, let alone other sciences. This meant doing lots of reading and then explaining things back to myself in baby language — and once you have an explanation of something in very simple terms, you’ve done some of the hardest part of the work that’s needed to explain it accessibly to others.

As a young researcher I’d internalised a fear of asking stupid questions, but as a maths communicator questions are your most important tool

While writing gave me lots of joy, other things were harder to learn. When I started at Plus, I think many mathematicians weren’t as familiar and comfortable with public engagement as they are now. I struggled sometimes to be taken seriously. As a young researcher I’d internalised a fear of asking stupid questions, but as a maths communicator questions are your most important tool. It took me a while to work that out and learn the courage to ask.

Today things are a lot easier in that respect (though I still sometimes spend ages trying to figure something out when I could just go and ask someone). The reason it’s easier is probably that attitudes towards science and maths communication have changed, and that I am older, a tiny bit wiser, and a little more confident.

At the moment we are collaborating with a group of diseases modellers (called JUNIPER) who have been advising the UK government, to bring important concepts and issues about COVID to a general audience

I love my job because it allows me to do what research didn’t: to learn a lot about all sorts of topics but without having to dig too deeply into the technical details. I get to meet amazing people and there are lots of opportunities to branch out and learn more. Rachel and I recently worked as science editors on a Discovery Channel series about the work of Stephen Hawking and privately co-wrote three popular maths books. At the moment we are collaborating with a group of diseases modellers (called JUNIPER) who have been advising the UK government, to bring important concepts and issues about COVID to a general audience. I feel very fortunate to have been given these opportunities.

To someone who’d like to go into science communication as a career, I’d say to get a good grounding in maths before (or while) you’re getting training in writing and communicating. Maths is everywhere in science, and if you can vaguely understand the maths in a piece of science, then you’re already a good way to understanding the rest. 

Posted by HMS in Stories
Gabriela Capo Rangel

Gabriela Capo Rangel

Born in Pitesti, Romania • Studied Applied Mathematics at Politehnic University of Bucharest • Erasmus MUNDUS fellow in Mathematical Modeling from University of L’Aquila, University of Nice and University of Hamburg • PhD in Applied Mathematics in the Basque Center for Applied Mathematics, Bilbao, Spain • Lives in Okinawa, Japan Works as a Postdoctoral Scholar in Computational Neuroscience at Okinawa Institute of Science and Technology (OIST)

My love for math started very early on. Since I was very young, I seemed to always have an analytical mindset and I adored solving puzzles. I was always the geeky kid, that was always curious about everything and I have always been a very solution-oriented person. My parents tell me I was determined to be a researcher from the age of 5, although I am not certain I actually understood what that meant. I used to love all analytical subjects, not only math, but also chemistry and physics. In fact, choosing my career path came extremely close between mathematics and chemistry. Somehow, I always missed chemistry, this is the reason why I went towards neuroscience and every now and then I get the chance to model some biochemistry.

I grew up in a freshly post-communist Romania, where the old generation generally believed that girls should study law or biology just due to the common misconception that girls can memorize better than boys.

Being a woman and choosing to study mathematics, I had to always fight for what I wanted. I grew up in a freshly post-communist Romania, where the old generation generally believed that girls should study law or biology just due to the common misconception that girls can memorize better than boys. Well, my memory has never been very good. I was lucky, because I had an amazing family that supported me in making my own choices and encouraged me to follow my own path.

[My high school professor] was the first person who showed me how to think outside the box, he sparked my curiosity for higher-level math and he treated me as equal to the other boys when preparing for competitions.

My first role model was a young professor in high school. He was my math professor only for the first year of high school and he directed me towards mathematics contests and math olympiads. He was the first person who showed me how to think outside the box, he sparked my curiosity for higher-level math and he treated me as equal to the other boys when preparing for competitions. In most of the contests that I have been, I was even the only girl or between the very few ones. The same trend continued at the university, where I went on and studied Applied Mathematics in Engineering. I studied in an engineering university, with under 10-20% of the total number of students being women.

After I graduated from university, I got an Erasmus MUNDUS fellowship for a Master of two years in Applied Mathematics, a highly competitive master program between three different countries: Italy, France and Germany. I got to experience the educational systems of the three different places, I had the chance to live in all these different places and learn the languages. Even in this international setting, I was still living in a world of men, having very few female colleagues and absolutely no female math professors in any of the three countries.

After graduating with the Master, I was awarded a Severo Ochoa Fellowship at the Basque Center for Applied Mathematics to pursue my PhD in Applied Mathematics in Biosciences. Particularly, I was modeling the interaction between the electrophysiology, the metabolism and the hemodynamics in the human brain. This captivating research gave me the chance to study not only the mechanisms behind the normal functioning of the human brain during resting state or neuronal activation, but also during various pathologies such as brain ischemia and cortical spreading depression. We focused on understanding the strong interconnection between how the electrical signals are transmitted in the brain, the interaction between multiple biochemical species constituting the brain metabolism and the blood flow.

[During my PhD] I met my biggest role model, my PhD advisor, Prof. Daniela Calvetti. She is all I ever dreamed of becoming: extremely intelligent, successful, determined, strong, loving and caring and the best mentor I have ever encountered.

It was then when I met my biggest role model, my PhD advisor, Prof. Daniela Calvetti. She is all I ever dreamed of becoming: extremely intelligent, successful, determined, strong, loving and caring and the best mentor I have ever encountered. She inspired me to gain not only knowledge and passion in my research field, but she inspired me to fight and pursue my dreams, no matter how much work that involves. There are no words to describe the depth of my gratitude, respect and love for her. I can only hope that one day I will inspire somebody, the way she inspired me.

After my PhD, I did a brief postdoc in Bilbao, after which I came to Japan to work as a postdoc at OIST. Here, I belong to the Computational Neuroscience group and my research concerns the cerebellum, the part of the brain that controls fine movement. I study the Purkinje neuron dendritic trees and I seek to understand how their morphology affects the spiking properties of these neuronal cells.

I just hope one day I will have the chance to teach and to provide my students not only with the scientific knowledge, but also with the courage and confidence to follow their own dreams.

The academic path is extremely hard to follow. I always feel like I am lacking stability. So far every few years, I have been changing between jobs, countries, friends and languages. Many times I dream about family life, stability and job security. I wanted to give up academia countless times, but I was lucky and I met people who inspired me to go on. I just hope one day I will have the chance to teach and to provide my students not only with the scientific knowledge, but also with the courage and confidence to follow their own dreams.

Posted by HMS in Stories
Candice Price

Candice Price

Born in Long Beach, CA, USA • Birth year 1980 • Studied Mathematics at The University of Iowa in Iowa City, IA, USA • Highest Degree PhD in Mathematics • Lives in Northampton, MA, USA • Occupation Assistant Professor of Mathematics at Smith College

I first fell in love with mathematics in the 3rd grade. It was by pure coincidence though. You see in the 3rd grade I learned how to multiply. Now we did not learn through the tangible way of repeated addition, but with music and memorization. Both of these pedagogical choices stimulated my interest in two ways: my love of music and my competitiveness. Let me elaborate a bit about this.

My whole family is very musical. My maternal grandfather was in a DooWop group named “The Mellows”. He taught my mother to sing, which translated to me singing in the church choir with my siblings. My father constantly played music in our home, especially on his record player. My sister and brother made music a part of their careers and I listen to music any chance I get. Needless to say music played a huge positive role in my life, and still does. So when my teacher played the SchoolHouse Rock multiplication videos for us in class, I was instantly sold! I still sing the song “3 is a magic number” sometimes. I got to see that music could play a large role in learning mathematics. It made mathematics fun and enjoyable. It also helped me memorize the multiplication table because I had memorized the lyrics. This helped with my competitive nature.

Looking at those celebrated in mathematics, I didn’t see someone that looked like me.

I think it is no secret that when learning multiplication, students are often subjected to timed “times table” tests. This was a test or quiz or even just an assignment where you had to fill out a sheet of multiplication problems in maybe around 5 minutes. Oddly, I thrived on this type of competition. It wasn’t a competition with my classmates, but a competition with myself. How many “times-tables” could I remember? How fast could I write them all down? Would I improve my previous score? I think this competitive nature pushed me to love the act of learning, keeping me excited about understanding things at a deeper level. I will also say that this competitive nature has also led to my trivia team, Juneteenth Wreath LLC, being 4 time trivia champs across 2 different platforms #humblebrag.

While this was the first experience I had that created a love of mathematics, I didn’t stay in love. I have walked away from mathematics when I felt that it was not the place for me. Looking at those celebrated in mathematics, I didn’t see someone that looked like me. I assumed that meant that no matter how much I loved math, it did not love me back. (I was a bit of a dramatic teenager.) While I came back to mathematics and made it my career, it wasn’t until recently that I felt like I had a place in mathematics. I would often tell folks “I am a mathematics professor, but I don’t see myself as a mathematician”. The distinction was that while I enjoyed teaching and talking about mathematics, did I think about it on the level that most “mathematicians” do? No. I didn’t enjoy research too much, although I loved working with my collaborators. I didn’t enjoy watching research talks, unless I knew the speaker. I would also be so nervous giving talks, always a bit unsure if I was painting the correct picture. But recently this has all changed.

If today Candice could talk to 3rd grade Candice about this great path through mathematics she is going to venture on, I would tell her about the ups and downs.

I have met so many amazing people who are also mathematicians. Many, but not all, are from minoritized groups in the mathematics community, all forging ahead creating their own definition of what it means to be a mathematician. This community helped me finish my PhD in Mathematics at the University of Iowa, supported me through my postdoctoral work at the United States Military Academy at West Point, and been a great guide through multiple career decisions/milestones I have made/passed, including starting a tenure track position at Smith College and receiving tenure and promotion. If today Candice could talk to 3rd grade Candice about this great path through mathematics she is going to venture on, I would tell her about the ups and downs. Let her know that she is stronger and more clever than she knows. And that she is a mathematician, that she became one that day. I would also give her a small reminder that it is ok to not always be super excited about something– except for music, that is a love that never dies.

Posted by HMS in Stories
Evelyn Cueva

Evelyn Cueva

Born in Quito, Ecuador • Birth year 1990 • Studied Mathematical Engineering at Escuela Politécnica Nacional in Ecuador • Highest Degree Ph.D. in Mathematical Modelling at Universidad de Chile • Lives in Quito, Ecuador

As a child, I did not dream of being a mathematician or a scientist; there was a total absence of that role model in my environment. My parents worked very hard so that my brothers and I could attend university. We would be the first generation to obtain a Bachelor’s degree. Living in the countryside and being surrounded by animals shaped me to study agronomy or veterinary medicine. However, my ability in mathematics motivated me to explore a career more related to numbers and abstract thinking.

Since I was a primary school kid, I have enjoyed math homework. I liked to think and invent my own problems. In high school, I was more interested in verbal math problems. I liked the process of “translating” these problems into equations. Despite my taste for mathematics, it was not until my last year of high school that I discovered a career opportunity in mathematics while reading the academic offer of a university. I did not know anyone who studied that subject or that there were jobs for mathematicians. My naive idea was that surely a mathematician knows everything about mathematics, and that caught my attention. One of the first options I considered was studying math to be a good math teacher. During my last year of high school I liked teaching math to my classmates. I was motivated by the idea of transmitting knowledge and helping others to look at problems more naturally.

Everything made sense and brought me back to what I enjoyed as a child: real-life problems translated into equations.

Once I enrolled in university, studying mathematics to be a teacher no longer seemed like a good idea. I realized that high school teachers study pedagogy and that was far from my personal interests. After exploring other options within the same university, I hesitated between chemical engineering and mathematical engineering; both attracted me a lot. The chemistry degree had a high component of physics, and I did not like it enough to study it for so long. I decided to follow mathematical engineering, even with many doubts about its usefulness. It was a kind of blind confidence that I would enjoy it very much.

University was challenging; it was a world that I mostly traveled blindly. The most abstract courses were meaningless to me because although they were fascinating and beautiful on their own, I did not know how they could be used in work life. It was only at the end of my studies that everything became a little clearer. When I did my undergraduate thesis, I connected the theory that I had studied with the world of applications. I understood why we need to seek solutions, guarantee their existence, and analyze their regularity. Everything made sense and brought me back to what I enjoyed as a child: real-life problems translated into equations.

I always had a particular interest in photography, but discovering the physical and mathematical models behind acquisition, reconstruction, and post-processing was something I did not want to stop learning about.

I worked on my undergraduate thesis with Juan Carlos De los Reyes, whom I thank for introducing me to the world of images. I always had a particular interest in photography, but discovering the physical and mathematical models behind acquisition, reconstruction, and post-processing was something I did not want to stop learning about. Since I had just found my passion, I opted for a Ph.D. program to learn more about it. I leaned towards the area of inverse problems, and in particular the modeling and reconstruction of images related to biomedicine. I most enjoyed simulating and visualizing ideas after writing them down on paper. 

This Ph.D. brought me extraordinary experiences such as visiting new places, meeting collaborators from other countries, having an excellent scientific community, just to mention a few. However, there were also challenges along my way: living away from my family, adapting to a new culture, not speaking in my native language, and dealing with frustrations and insecurities when things did not go as expected.

I wish that more and more women feel empowered to study engineering or science and do not rule it out as an option based on stereotypes.

A year ago, I finished my Ph.D. in mathematical modeling in Chile. After some post-PhD experiences as a research associate at the academy in Ecuador, my native country, I will start a postdoc at Millennium Nucleus for Applied Control and Inverse Problems in Chile this month. Although I enjoy teaching, I am happy for this new position dedicated more exclusively to do research.

As a woman, I have been able to feel equal within my workgroups. I was always the only woman, but that has never made me feel less worth than any of my male peers. I wish that more and more women feel empowered to study engineering or science and do not rule it out as an option based on stereotypes. Fortunately, nowadays, we can meet more women, we can look at them as our role models, and we can be role models for the next generations.

Posted by HMS in Stories
Ellese Cotterill

Ellese Cotterill

Born in Newcastle, Australia • Studied Advanced Mathematics at the University of New South Wales in Sydney, Australia • Highest Degree PhD in Computational Neuroscience from Cambridge University, UK • Lives in Sydney, Australia • Occupation Data Scientist

From as early as I can remember, I was always interested in maths and numbers. My grandad used to tell the story of me as a young child adding up the numbers on the back of buses on the way to pick up my sister from school. At school, maths was my favourite subject and something that I found came easily to me. When I finished high school, I really didn’t have any clear idea of what I wanted to do as a career, which made picking a university degree difficult. I wanted to do something where I felt like I was positively contributing to society, and a job in a medical field seemed like an obvious choice. For a while I considered medicinal chemistry, but being in a lab was never very appealing to me. In the end I decided to study something I knew I enjoyed, and so I enrolled in an advanced mathematics degree. My parents were quite confused why I didn’t choose a degree with a defined profession such as medicine or law, and questioned me about what kind of career I could have after studying mathematics. I didn’t have a good answer for that, but felt confident that if I did something I enjoyed, the career aspect of things would work itself out later.

(…) My grandmother was suffering from Alzheimer’s disease, so the possibility of making a contribution in that area by studying the brain was very appealing.

In my second year of undergraduate study I discovered the subject of biomathematics, which involves using quantitative methods to study the biological world. I found it really interesting, and ended up doing my honours project in the field, modelling molecular diffusion in cells. When I came to the end of my degree, however, there still wasn’t an obvious career path for mathematics graduates. Careers days were dominated by financial institutions, and I ended up accepting a position as a quantitative analyst at a large investment bank. It only took me a few months to realise this wasn’t the right path for me, and I started looking for other opportunities. I’d enjoyed the research aspect of my honours year, and so thought a PhD in a field like biomathematics could be a good option. There wasn’t much research happening in Australia in this area, but I read a lot coming out of UK universities such as Oxford and Cambridge. Coming from Australia, I’d never imagined that I would be able to get into such prestigious universities, but decided there was no harm in applying. At that time, my grandmother was suffering from Alzheimer’s disease, so the possibility of making a contribution in that area by studying the brain was very appealing. I managed to find a supervisor at Cambridge University working in the field of computational neuroscience, and was lucky enough to be accepted into a Wellcome Trust programme that would fund my PhD in that area.

I greatly enjoyed my time studying in Cambridge, and met a lot of interesting people. One thing I noticed was that although there were many talented female PhD students in the mathematics department, I met almost no female postdoctoral researchers. I believe the impermancy of contracts and often frequent relocation involved in the early stages of an academic career are aspects which turn women off pursuing academics, particularly those who want a family. These were certainly factors that influenced my decision not to continue in academia, and at the end of my PhD I instead looked for opportunities in industry back in Australia.

(…) Choosing to study mathematics has given me fundamental skills in logical reasoning and problem solving which can be applied across many industries and careers.

I spent a year working as a data scientist at a neurotechnology startup in Sydney, but found that the company’s small size meant that it was difficult to produce any meaningful insights with the limited amount of data available. I also realised that I was more interested in working on challenging and meaningful problems from a mathematical perspective, rather than their precise applications. These factors lead me to take a position outside neuroscience, at an aerial imagery company called Nearmap. I’ve been working there for over two years now, helping build models and systems for automatically detecting objects in aerial imagery. I’ve greatly enjoyed my time there, and have been lucky enough to work with a number of talented women within the artificial intelligence team.

If there’s any advice I would give young people choosing what to study, it would be to do what you enjoy and are passionate about, and don’t worry too much about a degree’s application to a career path. My job today isn’t something I would have imagined doing while at university, at which time the field of machine learning as it is today barely even existed. Technology advances so rapidly that it’s impossible to predict what the most exciting and important careers might be in the future. However, choosing to study mathematics has given me fundamental skills in logical reasoning and problem solving which can be applied across many industries and careers.

Posted by HMS in Stories
Carolin Trouet

Carolin Trouet

Born in Trier, the oldest city of Germany Birth year 1966 Studied Business Mathematics at the University of Trier Highest degree Diploma in Business Mathematics Lives in Mainz, Germany Leading teams in Software Development and acting as Chief Agility Master in the Airline IT Industry

In primary school, I struggled with math. My mother put a lot of effort into making me understand the difference between “plus” and “minus”. We were the first kids in Germany familiarized with set theory, working with books but also with these small boxes with plastic shapes of squares, circles, and triangles in different colors. My fascination for math started with geometry, with divisibility rules that our primary school teacher encouraged us to identify by ourselves and with the first mathematical proofs. When I was at grammar school, our teacher in mathematics told my mother: “She will never study mathematics, she is too lazy.” He was right about the laziness. My nickname is sloth, as I love lying in my hammock reading books. But I was fascinated by the ability of mathematicians to transform one problem into an equivalent one we can (easily) solve. The University in my hometown organized an open day and I attended some lectures. That’s when I decided to study math. It was a lecture about infinity and one on how to describe oscillations. This convinced me finally. When I was at university, our professors told us: “Later in your job most of you will never deal with mathematical problems like at University.”

Contrary to my professors’ prediction, I was one of the rare species among my fellow students who applied what we learnt at University.

My professor in numerical mathematics gave me the opportunity to work in a research project on optimization in robotics. Moreover, I received the opportunity to present the project at the industry exhibition in Hanover. He gave me trust, which created self-confidence I never had before. He changed my life. At this exhibition, I met my later husband. As he was living in the Rhine-Main-Region, I skipped my plan to obtain a PhD at my University. Instead, I searched for a job. This is how I started working in a very fascinating industry, the airline IT, as a software engineer in the area of flight optimization. Dijkstra for many years was and still is the algorithm of choice for solving shortest paths problems. At least it is a good basis. It is no longer sufficient due to many influencing factors such as regulations of air traffic flow. Cost optimality means reduction of fuel consumption, but also of overflight costs that are very hard to model. Contrary to my professors’ prediction, I was one of the rare species among my fellow students who applied what we learnt at University. Of course, not all problems in our industry are of this complex nature. However, developing algorithms and implementing software was complicated enough to keep me enthralled. So finally, both were wrong, my math teacher who said I would never study mathematics and the professors. Or did I want to prove them wrong?

It is a welcome change in a captivating profession of forming high performing teams, of dealing with trust-building and the soft facts of human interaction.

After 7 years, I decided to do something completely different. With my knowledge about software production, I joined a small team, the staff in the strategy department of our company. I gained insight into many different departments, sales, production, evaluation of acquisitions and business plans. Finally, I realized software production fascinates me most. So I returned, working in the role of a project manager for a completely new product development. Growing more and more into the leadership role, I was responsible for forming teams to build and operate many of our software products, applications managing the schedule preparation and operation of our airline customers worldwide. After 20 years, I returned to my roots, flight optimization. Developing algorithms for trajectory optimization is not my occupation any longer. Today, I am acting as a sponsor for our projects with the Zuse Institute in Berlin. It is a welcome change in a captivating profession of forming high performing teams, of dealing with trust-building and the soft facts of human interaction. I feel privileged, working in an international environment with diverse teams. Enhancing my knowledge by newest research in neuroscience and systems thinking is combining my private interest and profession.

The combination of rationality and empathy is not only possible; it is the theme of my story.

My favorite shape is the circle. Or is it more an upward spiral? Trust creates self-confidence. This is what I learnt in the research project at University and from my professor and my husband, who encouraged me very much in my professional development. Feedback and reflection create learning and improvement. The most amazing teams I know learnt from their mistakes and never stopped deriving actions to improve. Fearlessness creates the willingness to take responsibility. This describes very well the environment in which I could and still will grow from one role to the next. I had and still have colleagues and superiors I can talk to very openly, speaking my mind. I am not “punished” but supported in case things go wrong. As a mathematician, I have shown my ability to solve complex problems, as a leader I need to support teams to grow in a changing world. I love the following quote from Virginia Satir very much: “We get together on the basis of our similarities; we grow on the basis of our differences”. The combination of rationality and empathy is not only possible; it is the theme of my story.

Posted by HMS in Stories
Jamie Prezioso

Jamie Prezioso

Born in Warren, Ohio, United State Birth year 1989 Studied Applied Mathematics at Case Western Reserve University, Cleveland, Ohio, United States Lives in Washington, D.C. United States currently a Research Scientist

Growing up, I genuinely enjoyed math from an early age. I have fond memories of solving equations and homemade arithmetic flash cards with my grandfather. He consistently and lovingly encouraged me to pursue math. And so, I did.

I had an inclination that studying mathematics would open an array of opportunities, however, I had no tangible examples of this. Nevertheless, I was drawn to pursue math.

I happily studied and excelled in mathematics throughout middle and high school. When choosing a major in college, I did not even consider math. Having never seen or learned about modern-day mathematicians in school or media, I was unaware of this entire profession. Since I was also interested in medicine, I considered studying biology. I knew of clear academic and career paths in the medical field. Ultimately, my first year in college I was undecided. I had an inclination that studying mathematics would open an array of opportunities, however, I had no tangible examples of this. Nevertheless, I was drawn to pursue math. And so, I did.

I began to discover the ways you could use mathematics to solve problems I found interesting and important, like quantifying the effects of climate change or modeling predator-prey dynamics in fragile ecosystems. I graduated from Walsh University with a Bachelor’s of Science in Mathematics. When applying for graduate programs, I had every intention of obtaining a Master’s degree in a few years and leaving the program for industry. The thought of being in school for nearly all of my twenties seemed unbearable, if not impossible. I did not want to wait for my professional career, and in some sense my “adult” personal life, to begin. Still, I was excited to pursue math. And so, I did.

Through coursework and research, I found I was truly passionate about math. I developed strong quantitative modeling and coding skills. I even got to study areas of biology and medicine.

In the Fall of 2012, I began graduate school at Case Western Reserve University. I studied applied mathematics, taught Calculus to bright undergraduates and conducted research in mathematics and computational neuroscience. It was in graduate school where I grew both personally and professionally. I had many wonderful experiences with brilliant mathematicians from all over the world, many of whom I am still close with today. Through coursework and research, I found I was truly passionate about math. I developed strong quantitative modeling and coding skills. I even got to study areas of biology and medicine. I gained confidence in myself and a deeper understanding of mathematics. And so, I obtained a PhD in Applied Mathematics.

I use my background in mathematics to research machine learning (ML) and artificial intelligence (AI) models […]

Now, I am an Applied Mathematician. I am a Research Scientist at a consulting firm in the Washington, D.C. area. I use my background in mathematics to research machine learning (ML) and artificial intelligence (AI) models, focusing on interpretability and explainability. While AI/ML models have proven extremely useful on a variety of tasks, their inherent black-box nature and lack of interpretability limits their use in critical applications, like medicine or autonomous driving. Specifically, I research and develop neural networks, mathematical models which are typically highly over-parameterized but have exhibited superior performance on high dimensional data (e.g. images), trying to better understand how these models make predictions, assess their confidence and incorporate prior expert knowledge.

I feel very fortunate to have a career which aligns with my field of study and allows me to work on problems I am passionate and excited about. I hope that my story, and the stories of the other women here, highlight the vast number of exciting opportunities and careers in mathematics, the careers that I was unaware of for so long.

Posted by HMS in Stories