MathematicalBiology

Robyn Shuttleworth

Robyn Shuttleworth

Born in Melrose, Scotland • Birth year 1993 Studied Mathematics at University of Dundee, Scotland • Highest Degree Ph.D. in Applied Mathematics • Lives in Redwood City, California • Occupation Scientist II, Altos Labs

I wasn’t very sure what I wanted to study at university when I was in high school, I just knew for sure that I wasn’t finished with education. I really loved mathematics and biology, so it turned into a battle of the sciences. I went to one university visit (the one I happened to attend!) and toured both departments. The head of the math department started his presentation with “…mathematics graduates earn on average 10% more than any other graduate”. This one statement sealed it for me, and I decided to pursue a degree in Applied Mathematics. My reasons for pursuing mathematics came from quite a shallow and impulsive place, but I’ve grown to learn that that’s okay and you can’t always choose what motivates you. Assuming studying mathematics meant I would be working with numbers for the rest of my life, I imagined myself being an accountant or an actuary and I decided to take courses in business and accountancy in my first few years at university. Whilst this was okay, it didn’t enthrall me the way I had hoped. Fortunately, towards the final year of my bachelor’s degree, I joined a team of scientists in developing genetically engineered detection strategies for cystic fibrosis patients (very different from the classes in accountancy I had previously envisioned being my future). I was excited by the ways I could contribute as a mathematician, and it brought me back to my love of biology. Soon after, in my final year of undergrad, I chose my honors project in glioblastoma modeling. I learned so much about tumor growth and treatment strategies, and I knew this was only the beginning of my journey in mathematical biology. So, when the opportunity arose to pursue a Ph.D. in cancer research, I pushed hard for funding, and one month after graduating, I started reading papers for my Ph.D. in multiscale modeling of cancer progression. I developed mathematical models to describe how tumor cells interact with their microenvironment and explored the mechanisms used to invade the surrounding tissue. Throughout my Ph.D. I attended lots of conferences which gave me plenty of opportunity to present my work and I made lots of great connections. Networking with other scientists was one of the best parts of my graduate studies and I still maintain many of these relationships today.

I was excited by the ways I could contribute as a mathematician, and it brought me back to my love of biology.

I found my Ph.D., for the most part, very enjoyable. I loved the challenges that came with researching a new area and the undeniable feeling of success when you got some exciting new results, or you finally managed to debug your code! Alongside this elation, I did find some of my time difficult, but I must admit that those grievances have been mostly forgotten and feel like a distant memory. It was so important to me to have a strong support system, and I cherished my evenings and weekends with family and friends. Taking time for myself and detaching from the research helped keep me sane and motivated throughout my studies.

After three and a half years in my Ph.D., I was ready to move onto the next stage of my career. I set my sights on finding a Postdoc position, with only two stipulations; it had to be in the field of mathematical biology, and it had to be outside of the UK (another example of my unconventional motivation). With this in mind, I found a position at the University of Saskatchewan in the field of Cryobiology. I loved learning new math modeling techniques to apply to cryopreservation processes and I found that I was able to use a lot of my previous knowledge in this field. Although this switch in fields presented me with the challenge of effectively starting over and requiring a ton of reading (and auditing undergrad biology classes!), it was extremely fulfilling to use math models to predict the optimal experimental conditions for successful cryopreservation.

Fast forward three years, and I found myself in a familiar position: loving what I currently do, but ready to explore a new field and further develop my knowledge and skills. I had always envisioned myself in academia, however, through a chance encounter on social media, I came into a position within industry in the field of cellular rejuvenation. I now build mathematical models of cellular reprogramming and rejuvenation processes to help us understand what makes us, and our cells, “healthy”.

I had always envisioned myself in academia, however, through a chance encounter on social media, I came into a position within industry in the field of cellular rejuvenation.

I’ve consistently changed fields throughout my career, and I have learned something different from each of them that I carry with me to the next. The opportunities I have had are some of the most worthwhile and rewarding roles and ones I have immensely enjoyed. Whether I am investigating how tumors grow, finding the optimal way to freeze and store an organ, or helping us age gracefully, I would not wish to be anywhere else but at this forefront of scientific discovery and advancement.

Posted by HMS in Stories
Anna Konstorum

Anna Konstorum

Studied Biology/Bioinformatics at McGill University, Canada, and University of California, Los Angeles, USA, and Mathematics at University of California, Irvine, USA • Highest Degree PhD in Mathematics • Lives in United States • Occupation Research Staff Member at Center for Computing Sciences, Institute for Defense Analyses

I came to applied mathematics slowly, and circuitously – but sometimes that makes for the best stories. When I was young, I fell in love with the complexity of biological processes, and thus I chose to study biology for my BSc. My grandmother was a math teacher and I have fond memories of us playing all sorts of educational math games growing up, which instilled in me a joyful, non-competitive view of math. But I never saw myself as a mathematician, it was just something I enjoyed ‘on the side’.

I sat there in complete astonishment of the beauty and power of math to describe a world that I had realized I had always wanted to see in a mathematical light.

It was only when doing my Master’s, when I took a course focused on using dynamical systems to study the life sciences, that I came to see that mathematics needed to be more than a hobby for me. I sat there in complete astonishment of the beauty and power of math to describe a world that I had realized I had always wanted to see in a mathematical light. And, I felt then, everything clicked. That my love for math and complex systems such as biology were not separate, but actually completely intertwined. It was this realization that led me to do my PhD in mathematics. I performed research modeling interactions of growing tumors with their microenvironment and took classes in a wide range of mathematical subdisciplines. It was very difficult as I knew I had less experience with mathematics than many of my peers, but I also had complementary skills in working on real-world scientific problems, which gave me a unique vantage point to think about the methods I was studying. When I kept my focus on the subject matter, I knew I was where I needed to be. It was one of the hardest, but most rewarding experiences in my life.

I work at the interface of data science and applied mathematics to help address challenging problem sets in national security, and more generally in the computational and data science realms.

Something you come to understand by taking a strong pivot, is that both you and the world have the capacity to honor a new stage in your life and career, especially if you approach the challenge thoughtfully and creatively. I had come to understand that for me, the next stage that I wanted to reach was to expand my applied mathematics capabilities to new domains in addition to the life sciences. And, really, I was ready! Studying the life sciences from a mathematical perspective prepares you to handle a variety of complex data problems. The field is full of extremely noisy data – but data that has, if you chip at it long enough, fascinating patterns and meaning underneath the noise. I now get to do just that as a Research Staff Member at the Center for Computing Sciences, Institute for Defense Analyses (CCS/IDA). I work at the interface of data science and applied mathematics to help address challenging problem sets in national security, and more generally in the computational and data science realms. I’ve used approaches ranging from applied dynamical systems (PDEs and ODEs) to, more recently, unsupervised learning methods employing matrix- and tensor-decomposition frameworks. I also hold an adjunct faculty role in the Laboratory for Systems Medicine at the University of Florida, which allows me to continue to collaborate on projects in mathematical and systems biology.

I wish I had known to take advantage of all [professional societies] have to offer earlier in my career.

What I’ve come to realize is that your unique interests and capabilities, even when they may not fit easily into a clear label, do have a place in this world where they will be valued. My background in mathematical biology has given me a unique perspective on the challenges I face in my current role, both from a mathematical and applied sense. And it makes for some fun intersectional research.

Finally, I’d like to make a quick shout-out to the power of professional societies. I wish I had known to take advantage of all they have to offer earlier in my career. Societies like the American Mathematical Society (AMS), Society for Industrial and Applied Mathematics (SIAM), Association for Women in Mathematics (AWM), and Society for Mathematical Biology (SMB) all provide opportunities to network via conferences and meetings, and to learn more about opportunities in and outside of academia utilizing the skills you learn. You don’t need a minimum degree to join – just an interest to connect with like-minded researchers.

Posted by HMS in Stories